• Title/Summary/Keyword: OTFTs (Organic Thin Film Transistors)

Search Result 134, Processing Time 0.031 seconds

Solution Processable Symmetric 4-Alkylethynylbenzene End-Capped Anthracene Derivatives

  • Jang, Sang-Hun;Kim, Hyun-Jin;Hwang, Min-Ji;Jeong, Eun-Bin;Yun, Hui-Jun;Lee, Dong-Hoon;Kim, Yun-Hi;Park, Chan-Eon;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.541-548
    • /
    • 2012
  • New candidates composed of anthracene and 4-alkylethynylbenzene end-capped oligomers for OTFTs were synthesized under Sonogashira coupling reaction conditions. All oligomers were characterized by FT-IR, mass, UV-visible, and PL emission spectrum analyses, cyclic voltammetry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H$-NMR, and $^{13}C$-NMR. Investigation of their physical properties showed that the oligomers had high oxidation potential and thermal stability. Thin films of DHPEAnt and DDPEAnt were characterized by spin coating them onto Si/$SiO_2$ to fabricate top-contact OTFTs. The devices prepared using DHPEAnt and DDPEAnt showed hole field-effect mobilities of $4.0{\times}10^{-3}cm^2$/Vs and $2.0{\times}10^{-3}cm^2$/Vs, respectively, for solution-processed OTFTs.

A 2' QCIF Flexible OTFT driven AM-OLED Display

  • Suh, Kyung-Soo;You, In-Kyu;Kang, Seung-Youl;Ahn, Seong-Deok;Oh, Ji-Young;Kim, Gi-Hyun;Baek, Kyu-Ha;Kim, Chul-Am;Hwang, Chi-Sun;KoPark, Sang-Hee;Yang, Yong-Suk;Chung, Sung-Mook;Lee, Jeong-Ik;Do, Lee-Mi;Chu, Hye-Yong;Kang, Kwang-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.181-185
    • /
    • 2006
  • The flexible 2-inch AMOLED with $176{\times}144$ pixels has been demonstrated using top emission OLED driven by organic thin film transistors (OTFTs). For the development of AMOLED display on plastic substrate, we have developed several integration and unit process technologies. Through the optimization of the process based on plastic substrate, OTFT backplane with 2 transistors and 1 capacitor in a pixel has been fabricated and integrated with top emission OLED. The active addressing by OTFT driving circuit has been achieved and green light with 15 $cd/m^2$ at 15V has been observed.

  • PDF

Low-Voltage, Room temperature Fabricated ZnO Thin Film Transistor using High-K $(Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7)_{0.7}(MgO)_{0.3}$ Gate Insulator (고유전 $(Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7)_{0.7}(MgO)_{0.3}$ 게이트 절연막을 이용한 저전압 구동 상온공정 ZnO 박막트랜지스터)

  • Cho, Nam-Gyu;Kim, Dong-Hun;Kim, Kyoung-Sun;Kim, Ho-Gi;Kim, Il-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.96-96
    • /
    • 2007
  • Low voltage organic TFTs (OTFTs) and ZnO based TFTs (<5V), utilizing room temperature deposited $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ (BZN) thin films were recently reported, pointing to high-k gate insulators as a promising route for realizing low voltage operating flexible electronics. $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ (BZN) thin film is one of the most promising materials for gate insulator because of its large dielectric constant (~60) at room temperature. However their tendency to suffer from relatively high leakage current at low electric field (>0.3MV/cm) hinder the application of BZN thin films for gate insulator. In order to improve leakage current characteristics of BZN thin film, we mixed 30mol% MgO with 70mol% BZN and their dielectric and electric properties were characterized. We fabricated field-effect transistors with transparent oxide semiconductor ZnO serving as the electron channel and high-k $(Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7)_{0.7}(MgO)_{0.3}$ as the gate insulator. The devices exhibited low operation voltages (<4V) due to high capacitance of the $(Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7)_{0.7}(MgO)_{0.3}$ dielectric.

  • PDF

A Flexible Amorphous $Bi_5Nb_3O_{15}$ Film for the Gate Insulator of the Low-Voltage Operating Pentacene Thin-Film Transistor Fabricated at Room Temperature

  • Kim, Jin-Seong;Cho, Kyung-Hoon;Seong, Tae-Geun;Choi, Joo-Young;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.17-17
    • /
    • 2010
  • The amorphous $Bi_5Nb_3O_{15}$ film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-$O_2$ film) has a hydrophobic surface with a surface energy of $35.6\;mJm^{-2}$, which is close to that of the orthorhombic pentacene ($38\;mJm^{-2}$, resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of $145\;nFcm^{-2}$ during and after 10s bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the polyethersulphone substrate at room temperature using a BNRT-$O_2$ film as a gate insulator exhibited a promising device performance with a high field effect mobility of $0.5\;cm^2V^{-1}s^{-1}$, an on/off current modulation of $10^5$ and a small subthreshold slope of $0.2\;Vdecade^{-1}$ under a low operating voltage of -5 V. This device also maintained a high carrier mobility of $0.45\;cm^2V^{-1}s^{-1}$ during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-$O_2$ film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.

  • PDF

Synthesis of Novel Asymmetric Oligomers Based on Benzothiophene and OTFT Characteristics (벤조사이오펜을 기초로 한 새로운 비대칭형 올리고머의 합성과 OTFT 특성)

  • Lee, Dong-Hee;Park, Jong-Won;Chung, Dae-Sung;Park, Chan;Kim, Yun-Hi;Kwon, Soon-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.129-129
    • /
    • 2010
  • The conjugated oligomers with rigid and fused-ring structures are of interest for the solution-processable organic thin film transistors (OTFTs) due to their well defined structure and high purity. In this study, alkyl substituted benzothiophene based oligomers were synthesized by a novel route, the key point of which is the acid-induced intermolecular cyclization reaction of aromatic methyl sulfoxides, and were confirmed by $^1H$-NMR and FT-IR studies. The obtained oligomers showed the good solubility in common organic solvents such as hexane, chloroform, and dimethylchloride at room-temperature, which is due to the introduced alkyl chain. The physical and optical properties of the oligomers were studied using differential scanning scalorimetry (DSC), cyclic-voltammetry (CV), UV-visible and PL spectra studies. Solution processed OTFT device based on synthesized oligomers show a high hole mobility of up to $0.01\;cm^2V^{-1}s^{-1}$, $I_{on}/I_{off}$ of $10^5$ and threshold voltage of -14V.

  • PDF

Investigation of Top-Contact Organic Field Effect Transistors by the Treatment Using the VDP Process on Dielectric

  • Kim, Young-Kwan;Hyung, Gun-Woo;Park, Il-Houng;Seo, Ji-Hoon;Seo, Ji-Hyun;Kim, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.54-60
    • /
    • 2007
  • 이 논문에서는 게이트 절연막 위에 vapor deposition polymerization(VDP)방법을 사용하여 성막한 유기 점착층을 진공 열증착하여 유기 박막 트랜지스터(OTFTs)소자를 제작할 수 있음을 증명하였다. 우리가 제작한 Staggered-inverted top-contact 구조를 사용한 유기 박막 트랜지스터는 전기적 output 특성이 포화 영역안에서는 포화곡선을, triode 영역에서는 비선형적인 subthreshold를 확실히 볼 수 있음을 발견했다. $0.2{\mu}m$ 두께를 가진 게이트 절연막위에 유기 점착층을 사용한 OTFTs의 장 효과 정공의 이동도와 문턱전압, 그리고 절멸비는 각각, 약 0.4cm2/Vs, -0.8V, 106 이 측정되었다. 게이트 절연막의 점착층으로써 폴리이미드의 성막을 위해, 스핀코팅 방법 대신 VDP 방법을 도입하였다. 폴리이미드 고분자막은 2,2bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride(6FDA)와 4,4'-oxydianiline(ODA)을 고진공에서 동시에 열 증착 시킨 후, 그리고 $150^{\circ}C$에서 1시간, 다시 $200^{\circ}C$에서 1시간 열처리하여 고분자화된 막을 형성하였다. 그리고 점착층이 OTFTs의 전기적 특성에 주는 영향을 설명하기 위해 비교 연구하였다.

Stability of Organic Thin Film Transistors (OTFTs) with Au and ITO S/D(Source/Drain) Electrodes

  • Lee, Hun-Jung;Kim, Sung-Jin;Lee, Sang-Min;Ahn, Taek;Park, Young-Woo;Suh, Min-Chul;Mo, Yeon-Gon;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1361-1363
    • /
    • 2005
  • In this paper, we report on the performance stability of solution processible OTFT devices with Au/Ti and ITO source-drain (S/D) electrodes. It appears that the contact resistance of the S/D electrode strongly affects the stability of OTFT devices. Interestingly, the devices with the Au/Ti electrode showed lower mobility than those with the ITO (S/D) devices. The field effect mobilities of the devices with the Au/Ti and ITO electrodes were 0.06, and $0.44cm^2/Vs$, respectively. However, the mobility of the device with the Au/Ti electrode was increased up to $0.26cm^2/Vs$ after 2 weeks, while the mobility of the device with ITO electrode was slightly decreased down to $0.41cm^2/Vs$. The experimental data show us that ITO could be used as the S/D electrode for low-cost OTFT devices.

  • PDF

Characteristics of Pentacene Organic Thin-Film Transistors with $PVP-TiO_2$ as a Gate Insulator

  • Park, Jae-Hoon;Kang, Sung-In;Jang, Seon-Pil;Kim, Hyun-Suck;Choi, Hyoung-Jin;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1301-1305
    • /
    • 2005
  • The performance of OTFT with $PVP-TiO_2$ composite, as a gate insulator, is reported, including the effect of surfactant for synthesizing the composite material. According to our investigation results, it was one of critical issues to prevent the aggregation of $PVP-TiO_2$ particles during the synthesis process. From this point of view, $PVP-TiO_2$ particles were treated using Tween80, as a surfactant, and we could reduce the aggregated $PVP-TiO_2$ clusters. As a result, the OTFT with the composite insulator showed the threshold voltage of about -8.3 V and the subthreshold slope of about 1.5 V/decade, which are the optimized properties compared to those of OTFTs with bare PVP, in this study. It is thought that these characteristic improvements are originated from the increase in the dielectric constant of the PVP-based insulator by compositing with high-k particles.

  • PDF

Design of Pixel Circuit for AMOLED Using Pentacene TFTs (펜타센 TFT를 이용한 AMOLED 픽셀회로 설계)

  • Ryu Gi-Seong;Choe Ki-Beom;Lee Myung-Won;Song Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we designed a pixel circuit for AMOLED display based on organic thin film transistors and analyzed the operation with SPICE simulation. First, we theoretically designed the pixel circuit with the result of layout for fabricating $32\times32$ AMOLED panel, TFT W/L and capacitance of storage capacitor. And we simulated the designed pixel circuit using HSPICE for analyzing electrical performance. As a result of simulation, we identified the possibility of AMOLED display based on OTFTs.

Study on OTFT-Backplane for Electrophoretic Display Panel (전기영동 디스플레이 패널용 OTFT-하판 제작 연구)

  • Lee, Myung-Won;Ryu, Gi-Sung;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.1-8
    • /
    • 2008
  • We fabricated flexible electrophoretic display(EPD) driven by organic thin film transistors(OTFTs) on plastic substrate. We designed the W/L of OTFT to be 15, considering EPD's transient characteristics. The OTFTs employed bottom contact structure and used Al for gate electrode, the cross-linked polyvinylphenol for gate insulator, pentacene for active layer. The plastic substrate was coated by PVP barrier layer in order to remove the islands which were formed after pre-shrinkage process and caused the electrical short between bottom scan and top data metal lines. Pentacene active layer was confined within the gate electrodes so that the off current was controlled and reduced by gate electrodes. Especially, PVA/Acryl double layers were inserted between EPD panel and OTFT-backplane in order to protect OTFT-backplane from the damages created by lamination process of EPD panel on the backplane and also accommodate pixel electrodes through via holes. From the OTFT-backplane the mobility was $0.21cm^2/V.s$, Ion/Ioff current ratio $10^5$. The OTFT-EPD panel worked successfully and demonstrated to display some patterns.