• 제목/요약/키워드: OSCs

검색결과 42건 처리시간 0.024초

Wet-Chemically Prepared NiO Layers as Hole Transport Layer in the Inverted Organic Solar Cell

  • Lim, Dong-Chan;Kim, Young-Tae;Shim, Won-Hyun;Jang, A-Young;Lim, Jae-Hong;Kim, Yang-Do;Jeong, Yong-Soo;Kim, Young-Dok;Lee, Kyu-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.1067-1070
    • /
    • 2011
  • We have demonstrated that solution-based fabrication of NiO films as HTL can be used for the construction of IOSCs. Type of solvent of NiO-solution, and annealing procedure of the active layers were optimized for obtaining a PCE of 3% of IOSC. The photovoltaic performance of NiO-based device is comparable to that of the same type of solar cell using PEDT:PSS instead of NiO. These solution-based processes can be a promising method for a mass production OSCs under ambient condition.

Polymer/fullerene/LiF inter-layer BHJ 유기태양전지의 광학 및 전기적 특성에 대한 연구 (Electrical and optical characterizations of OSCs based on polymer/fullerene BHJ structures with LiF inter-layer)

  • 송윤석;김승주;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.27-32
    • /
    • 2011
  • In this study, we have investigated the power conversion efficiency of organic solar cells utilizing conjugated polymer/fullerene bulk-hetero junction(BHJ) device structures. We have fabricated poly(3-hexylthiophene)(P3HT), poly[2methoxy-5-(3',7'-dimethyloctyl-oxy)-1-4-phenylenevinylene] as an electron donor, [6,6]-phenyl $C_{61}$ butyric acid methylester(PCBM-$C_{61}$)as an electron acceptor, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) used as a hole injection layer(HIL), after fabricated active layer, between active layer and metal cathode(Al) deposited LiF interlayer(5 nm). The properties of fabricated organic solar cell(OSC) devices have been analyzed as a function of different thickness. The electrical characteristics of the fabricated devices were investigated by means J-V, fill factor(FF) and power conversion efficiency(PCE). We observed the highest PCEs of 0.628%(MDMO-PPV:PCBM-$C_{61}$) and 2.3%(P3HT:PCBM-$C_{61}$) with LiF inter-layer at the highest thick active layer, which is 1.3times better than the device without LiF inter-layer.

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers

  • Shamsi, Mohammad;Ghanbari, Ali;Nazariafshar, Javad
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.329-342
    • /
    • 2019
  • In this paper, the effect of a group of sand columns in the loose soil bed using triaxial tests was studied. To investigate the effect of geotextile reinforcement type on the bearing capacity of these sand columns, Vertical encased sand columns (VESCs) and horizontally reinforced sand columns (HRSCs) were used. Number of sixteen independent triaxial tests and finite element simulation were performed on specimens with a diameter of 100 mm and a height of 200 mm. Specimens were reinforced by either a single sand column or three sand columns with the same area replacement ratio (16%) to evaluate the Influence of the column arrangement. Effect the number of sand columns, the length of vertical encasement and the number of horizontal reinforcing layers were investigated, in terms of bearing capacity improvement and economy. The results indicated that the ultimate bearing capacity of the samples with three ordinary sand columns (OSCs) is eventually about 11% more than samples with an OSC. Also, comparison of the column reinforcing modes showed that four horizontal layers of geotextile achieved similar performance to a vertical encasement geotextile at the 50% of the column height, from the viewpoint of strength improvement, while from the viewpoint of economy, the geotextile needed for encasing the single column is around 2.5 times of the geotextile required for four layers.

용액법 기반의 유기태양전지 제작을 위한 투명전극 개발 (Investigation of Transparent Electrodes for Solution-Processed Organic Solar Cells)

  • 이수민;강문희
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.115-120
    • /
    • 2021
  • In this study, composite transparent electrodes were fabricated either from a conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) or silver nanowire (AgNW). Three transparent electrodes such as PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW were fabricated. As for a transparent electrode, measured sheet resistance values were 89.6, 60.6 and 28.6 Ω/sq, and the transmittance values were 80.2, 82.0 and 83.8% while surface roughness (Rq) values were 4.1, 8.1, 20.4 nm for PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW, respectively. To verify the overall performance of these composite electrodes, we applied these electrodes to the top electrode of the solution-processed organic solar cells (OSCs). PEDOT:PSS provided the best performance with a fill factor (FF) of 51.2% and a photoconversion efficiency (PCE) of 2.2%, while traditional metal top electrode OSC provided FF of 60.5% and PCE of 3.1%.

유기태양전지 저비용 광활성층 재료의 개발 동향 (Research Trends in Low-Cost Photoactive Layer Materials for Organic Solar Cells)

  • 김소영;이원호
    • 접착 및 계면
    • /
    • 제25권1호
    • /
    • pp.143-151
    • /
    • 2024
  • 유기태양전지(Organic photovoltaics, OPV)는 기계적 유연성, 경량, 반투명성, 낮은 제조 비용 등 여러 가지 고유한 특성을 지니고 있어 차세대 신재생 에너지원으로 큰 잠재력을 보여 왔다. 최근 분자구조 및 소자 엔지니어링의 발전으로 19% 이상의 높은 효율을 달성했다. 그러나 이러한 높은 효율을 갖춘 광활성층 물질들은 복잡한 구조로 인해 합성 과정이 복잡하며 제조비용이 높아 상용화에 어려움이 있다. 이 문제를 해결 하기 위해 간단한 구조를 갖는 저비용 광활성층 물질들에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 이러한 낮은 비용의 광활성층 물질 및 이를 합성하기 위한 전략들에 대해 소개한다.

가열롤 임프린팅 방법을 이용한 유연 유기태양전지용 Ag 그리드 패턴 PET 기판 제작 (Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells)

  • 조정민;조정대;김태일;김동수
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.993-998
    • /
    • 2014
  • Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

A STUDY ON A CATALYTIC CONVERTER OBD BEFORE LIGHT-OFF

  • Yun, Seung-Won;Son, Geon-Seog;Lee, Kwi-Young
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.33-40
    • /
    • 2002
  • Increasingly stringent emission regulations of EU and CARB (California Air resource Board) require mandatory OBD (On Board Diagnostics) far the catalytic converters of a vehicle. It demands that MIL(Malfunction Indication Light) should be tuned on to inform the driver of catalytic converter failures. Currently dual oxygen sensor method Is widely used for the converter OBD. However, since it works only alter converter light-off, it has a serious limitation when applied to TLEV or more stringent emission regulations where more than 85% of total emission is coming out before converter light-off. In addition, a recent development in catalyst material. coating technology and additive catalysts leads to a much improved OSC (Oxygen Storage Capacity) after converter light-off, current methods are very difficult to determine levels of converter aging. Therefore, it is desired to develop an OSC detecting method before converter light-off to diagnose converter failures with higher reliability. In this study, OSCs of converters are measured by an absolute measuring method and a dynamic measuring method, and some of fundamental ideas are suggested about converter OBD before converter light-off. The converters are aged with two different aging methods; those are a furnace aging and an engine bench aging: to represent aging conditions in actual field applications. Dual oxygen sensor method at the lower temperature than light-off is also studied at a model gas bench with the converters. It is fecund that there is a certain point in temperature lower than light-off where difference due to aging level becomes maximum, thus a proper dynamic method to effectively monitor catalytic converters could be implemented fur the range lower than light-off temperatures. With this result, the aging level of converters is examined at an engine bench.

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat;Tan, Sin Tee;Chong, Kok-Keong;Lee, Hock Beng;Ginting, Riski Titian;Lim, Fang Sheng;Yap, Chi Chin;Tan, Chun Hui;Chang, Wei Sea;Jumali, Mohammad Hafizuddin Hj
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1564-1570
    • /
    • 2018
  • Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.