• Title/Summary/Keyword: ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING(OFDM)

Search Result 816, Processing Time 0.025 seconds

Adaptive TR Scheme for PAPR Reduction in OFDM Systems (OFDM 시스템의 PAPR 감소를 위한 적응적 TR 기법)

  • Lim, Dae-Woon;Noh, Hyung-Suk;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7C
    • /
    • pp.554-561
    • /
    • 2008
  • For the tone reservation (TR) scheme in orthogonal frequency division multiplexing (OFDM), there exists a trade-off between peak to average power ration (PAPR) reduction performance and data transmission rate. While PRT set is fixed in the conventional TR scheme, the proposed scheme adaptively select the PRT set according to the PAPR of the input OFDM symbol. It is shown that the PAPR reduction performance of the proposed scheme is better than that of the conventional scheme when the data transmission rate is the same.

OFDM-Based STBC with Low End-to-End Delay for Full-Duplex Asynchronous Cooperative Systems

  • Jiang, Hua;Xing, Xianglei;Zhao, Kanglian;Du, Sidan
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.710-713
    • /
    • 2013
  • We propose a new space-time block coding (STBC) for asynchronous cooperative systems in full-duplex mode. The orthogonal frequency division multiplexing (OFDM) transmission technique is used to combat the timing errors from the relay nodes. At the relay nodes, only one OFDM time slot is required to delay for a pair-wise symbol swap operation. The decoding complexity is lower for this new STBC than for the traditional quasi-orthogonal STBC. Simulation results show that the proposed scheme achieves excellent performances.

Design of a RS(23,17) Reed-Solomon Decoder (RS(23,17) 리드-솔로몬 복호기 설계)

  • Kang, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2286-2292
    • /
    • 2008
  • In this paper, we design a RS(23,17) decoder for MB-OFDM(Multiband-Orthogonal Frequency Division Multiplexing) system, in which Modified Euclidean(ME) algorithm is adopted for key equation solver block. The proposed decoder has been optimized for MB-OFDM system so that it has less latency and hardware complexity. Additionally, we have implemented the proposed decoder using Verilog HDL and synthesized with Samsung 65nm library. From synthesis results, it can operate at clock frequency of 250MHz, and gate count is 20,710.

Joint Estimation Schemes of Carrier and Sampling Frequency Offsets for MB-OFDM UWB Systems (MB-OFDM UWB 시스템을 위한 반송파 및 샘플링 주파수 오프셋 결합 추정 기법)

  • Cho, Chang-Hoon;Yang, Suck-Chel;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.965-975
    • /
    • 2005
  • In this paper, we propose and evaluate joint carrier and sampling frequency offset estimation schemes based on the channel estimation sequences in PLCP (Physical Layer Convergence Procedure) preamble for the proper and effcient synchronization of the MB-OFDM WB (Multi-Band Orthogonal Frequency Division Multiplexing Ultra Wide Band) systems which have recently drawn explosive attention for future W-PAN (Wireless Personal Area Network) applications. In the joint estimation schemes, we first estimate the sampling frequency offset, and then estimate the carrier frequency offset using the estimated sampling frequency offset. Moreover, to improve the reliability of the estimated offset values, each process uses a combination scheme based on weighting factors. Simulation results using IEEE 802.15 Task Group 3a UWB channel models reveal that the estimation scheme using the simple weighting factors based on easily-measurable received signal power of each sub-channel shows favorably comparable performance to the ideal scheme using the weighting factors based on the perfectly-estimated frequency response of the channel.

Design of Tone-Controlled CI/OFDM Communication System and Improvement of BER Performance by IMD Reduction (톤 제어 방식의 CI/OFDM 통신 시스템 설계와 IMD 저감을 이용한 BER 성능 향상)

  • Kim, Seon-Ae;Lee, Il-Jin;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.363-371
    • /
    • 2009
  • OFDM(orthogonal frequency division multiplexing) is very effective forhigh data rate transmission system. However, communication performance becomes worse because of nonlinear distortion resulting from the PAPR. In this paper, we like to propose a tone-controlled CI/OFDM system including the TMD (inter-modulation distortion) reduction method in order to improve the BER performance. In this tone-controlled CI/OFDM system, control tone is additionally inserted in each data symbol of CI/OFDM system to make the CI/OFDM lower the PAPR and robust to nonlinear distortion. So, tone-controlled CI/OFDM using the IMD reduction method shows better BER (bit error rate) performance than methods based on PAPR reduction.

OFDM based mimicking dolphin whistle for covert underwater communications (OFDM 기반 돌고래 휘슬음 모방 수중 은밀 통신 기법)

  • Lee, Hojun;Ahn, Jongmin;Kim, Yongcheol;Seol, Seunghwan;Kim, Wanjin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This paper proposed an Orthogonal Frequency Division Multiplexing (OFDM) based biomimetic communication method using a dolphin whistle which covertly transmits communication signals to allies. The proposed method divides the dolphin whistle into several time slots corresponding to a number of OFDM symbols, and modulates the communication signal by mapping differential phase shift keying (DPSK) symbols into subcarriers that have the frequency bands of the dolphin whistle in each slot. The advantages of the proposed method are as follows: In the conventional Chirp Spread Spectrum (CSS) and Frequency Shift Keying (FSK) based biomimetic communication methods, the discontinuity of the frequency contour is large, but the proposed method can reduce the discontinuity. Even if the modulation order is increased, the degradation of the mimicking performance is small. The computer simulations demonstrate that the Bit Error Rate (BER) and mimicking performance of the proposed method are better performance than those of the conventional CSS and FSK.

A Combination of CS-CDMA and OFDM for Enhanced LTE on Downlink Channel

  • Jiao, Bingli;Ma, Meng;Lee, William C.Y.
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • For alleviating the low spectrum efficiency problem of orthogonal frequency division multiplexing (OFDM), due to the strong inter-cell-interference (ICI) at cell's edge, we introduce comb-spectrum code division multiple access (CS-CDMA) into broadband OFDM system at downlink channel for enabling the use of entire spectrum for seamless coverage. In addition, we develop a new method, called orthogonal cell code (OCC) scheme, to assist CS-CDMA for nullifying the ICI from contiguous cells. In system operation, each of the conventional cells is divided into an outer cell and an inner cell, and a mobile station (MS) should access to the CS-CDMA when it is in the outer cell and access to OFDM when it is in the inner cell. This study investigates the spectrum efficiency of using CS-CDMA and makes a comparison with that of long term evolution (LTE) in the following cases; (1) under an assumption of perfect channel state information and (2) based on channel estimates at a MS station. The results show the great advantage of utilizing the proposed system.

ICI Cancellation of OFDM System with Multiple Frequency offsets (직교 주파수 분할 다중화 시스템에서 다중 주파수 옵셋에 의한 채널간 간섭 제거기법)

  • Won, Yu-Jun;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • In this paper, an interchannel interference (ICI) cancellation method is proposed for multiple frequency offsets in orthogonal frequency division multiplexing (OFDM) systems. When several same signals are received from different transmitters simultaneously, multiple frequency offsets may occur at the receiver because of the frequency difference of the oscillators of the two transmitters and the receiver. This causes degradation of system performance because OFDM systems are very sensitive to the frequency offsets. In this paper, we propose a method to eliminate the effect of the multiple frequency offsets for OFDM systems. The method is accomplished in two steps: compensation of the frequency offset in the time domain and subsequent cancellation of the ICI in the frequency domain. Through computer simulations, we verify the effectiveness of the proposed ICI cancellation method.

Cognitive UWB-OFDM: Pushing Ultra-Wideband Beyond Its Limit via Opportunistic Spectrum Usage

  • Arslan Huseyin;Sahin Mustafa E.
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2006
  • In a continuously expanding wireless world, the number of radio systems increases every day and efficient spectrum usage becomes a more significant requirement. Ultra-wideband (UWB) and cognitive radio are two exciting technologies that offer new approaches to the spectrum usage. The main objective of this paper is to shed the first light on the marriage of these two important approaches. The strength of orthogonal frequency division multiplexing (OFDM) based UWB in co-existing with licensed systems is investigated. The opportunity concept is defined, and the requirements of the opportunistic spectrum usage are explained. It is proposed to take the UWB-OFDM from the current underlay implementation, and evolve it to a combined underlay and opportunistic spectrum usage technology, leading to cognitive UWB-OFDM. This way, we aim at making UWB more competitive in the wireless market with extended range, higher capacity, better performance, and a wide variety of applications.

Improving the Performance of OFDM-Based Vehicular Systems through Diversity Coding

  • Arrobo, Gabriel E.;Gitlin, Richard D.
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.132-141
    • /
    • 2013
  • In this paper, we present diversity coded orthogonal frequency division multiplexing (DC-OFDM), an approach to maximize the probability of successful reception and increase the reliability of OFDM-based systems through diversity coding. We focus on the application of DC-OFDM to vehicular networks based on IEEE 802.11p technology and analyze the performance improvement using this new technology. It is shown that DC-OFDM significantly improves the performance of vehicular ad hoc networks in terms of throughput and the expected number of correctly received symbols.