• 제목/요약/키워드: ORIGEN-ARP

검색결과 20건 처리시간 0.025초

DETERMINATION OF BURNUP AND PU/U RATIO OF PWR SPENT FUELS BY GAMMA-RAY SPECTROMETRY

  • Park, Kwang-June;Ju, June-Sik;Kim, Jung-Suk;Shin, Hee-Sung;Chun, Yong-Bum;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1307-1314
    • /
    • 2009
  • The isotope ratio of $^{134}Cs/^{137}Cs$ in a spent PWR fuel sample was obtained with a newly developed gamma/neutron combined measuring system at KAERI. Burnup and Pu/U ratio of the spent fuel sample were determined by using the measured isotope ratio and the burnup-isotope ratio correlation equations calculated from the ORIGEN-ARP computer code. The results were compared and evaluated with the chemically determined burnup and Pu/U ratio. As a result of the comparative evaluation, the nondestructively determined burnup and Pu/U ratio values showed a good agreement with the chemically obtained results to within a 4.5% and 0.8% difference, respectively.

웨스팅하우스형 원전 사용후핵연료에 대한 방사선원항 예측 모델 개발 (Development of a Simplified Source Term Estimation Model for a Spent Fuel from Westinghouse-type Reactors)

  • 조동건;국동학;최희주;최종원
    • 방사성폐기물학회지
    • /
    • 제8권3호
    • /
    • pp.239-245
    • /
    • 2010
  • 2009년말 기준으로 11,811 다발의 경수로 사용후핵연료가 방출되었으며, 지금까지 각 사용후핵연료에 대해 방사선원항을 가중하여 설계에 반영하기는 사실상 불가능하여, 원자력 관련시설 설계시 보수성을 갖는 기준 사용후핵연료를 선정하고 이를 바탕으로 시스템 설계를 수행하여 왔다. 방사선원항에 대한 단순모델을 적용하면 각 사용후핵연료에 대한 방사선원항을 가중함으로써 이와 같은 보수성을 배제할 수 있으므로 본 연구에서 웨스팅하우스형 원전에 사용된 사용후핵연료를 대상으로 방사선원항, 즉, 붕괴열, 방사능세기, 섭취위해도 등을 예측하기 위한 회귀모형을 개발하였다. 개발된 회귀식을 통해 예측된 방사선원항값은 ORIGEN-ARP 코드로 계산된 값과 약 5% 이내에서 잘 일치함을 확인하였으며, 이의 유용성을 검토한 결과 각각의 사용후핵연료에 대한 방사선원항을 가중하여 설계에 반영하면 보수성을 줄일 수 있음을 확인하였다. 따라서 본 연구에서 개발된 회귀식은 사용후핵연료의 저장 및 처분과 관련한 원자력시설 설계시 개념설계 단계에서 유용하게 사용될 수 있을 것으로 판단된다.

SHIELDING PERFORMANCE OF A NEWLY DESIGNED TRANSPORT CASK IN THE ADVANCED CONDITIONING SPENT FUEL PYROPROCESS FACILITIY

  • Park, Chang-Je;Jeong, Chang-Joon;Min, Deok-Ki;Kang, Hee-Young;Choi, Woo-Seok;Lee, Joo-Chan;Bang, Gyeoung-Sik;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.319-326
    • /
    • 2008
  • To transport process wastes efficiently from the Advanced Spent Fuel Conditioning Pyro-process Facility (ACPF) at the Korea Atomic Energy Research Institute (KAERI), a new hot cell cask has been designed based on an existing hot cell padirac transport cask, with not only a neutron absorber for improved shielding capability, but also a docking facility for an easy docking system. In the new hot cell cask, two kinds of materials have been considered as shielding materials, polyethylene and resin. To verify the transport compatibility of the waste and spent fuel for the ACPF, neutron and photon shielding calculations were performed using the MCNPX code. The source term was evaluated by the ORIGEN-ARP code system based on spent PWR fuel. From the calculation, it was found that the maximum surface dose rates of the hot cell cask with the two candidates were estimated within the limit (2 mSv/hr).

A Method to Estimate the Burnup Using Initial Enrichment, Cooling Time, Total Neutron Source Intensity and Gamma Source Activities in Spent Fuels

  • Sohee Cha;Kwangheon Park;Mun-Oh Kim;Jae-Hun Ko;Jin-Hyun Sung
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.303-313
    • /
    • 2023
  • Spent fuels (SFs) are stored in a storage pool after discharge from nuclear power plants. They can be transferred to for the further processes such as dry storage sites, processing plants, or disposal sites. One of important measures of SF is the burnup. Since the radioactivity of SF is strongly dependent on its burnup, the burnup of SF should be well estimated for the safe management, storage, and final disposal. Published papers about the methodology for the burnup estimation from the known activities of important radioactive sources are somewhat rare. In this study, we analyzed the dependency of the burnup on the important radiation source activities using ORIGEN-ARP, and suggested simple correlations that relate the burnup and the important source activities directly. A burnup estimation equation is suggested for PWR fuels relating burnup with total neutron source intensity (TNSI), initial enrichment, and cooling time. And three burnup estimation equations for major gamma sources, 137Cs, 134Cs, and 154Eu are also suggested.

RADIOLOGICAL DOSE ASSESSMENT ACCORDING TO METHODOLOGIES FOR THE EVALUATION OF ACCIDENTAL SOURCE TERMS

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • 제39권4호
    • /
    • pp.176-181
    • /
    • 2014
  • The object of this paper is to evaluate the fission product inventories and radiological doses in a non-LOCA event, based on the U.S. NRC's regulatory methodologies recommended by the TID-14844 and the RG 1.195. For choosing a non-LOCA event, one fuel assembly was assumed to be melted by a channel blockage accident. The Hanul nuclear power reactor unit 6 and the CE $16{\times}16$ fuel assembly were selected as the computational models. The burnup cross section library for depletion calculations was produced using the TRITON module in the SCALE6.1 computer code system. Based on the recently licensed values for fuel enrichment and burnup, the source term calculation was performed using the ORIGEN-ARP module. The fission product inventories released into the environment were obtained with the assumptions of the TID-14844 and the RG 1.195. With two kinds of source terms, the radiological doses of public in normal environment reflecting realistic circumstances were evaluated by applying the average condition of meteorology, inhalation rate, and shielding factor. The statistical analysis was first carried out using consecutive three year-meteorological data measured at the Hanul site. The annual-averaged atmospheric dispersion factors were evaluated at the shortest representative distance of 1,000 m, where the residents are actually able to live from the reactor core, according to the methodology recommended by the RG 1.111. The Korean characteristic-inhalation rate and shielding factor of a building were considered for a series of dose calculations.

Quantitative Evaluation of Radiation Dose Rates for Depleted Uranium in PRIDE Facility

  • Cho, Il Je;Sim, Jee Hyung;Kim, Yong Soo
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.378-383
    • /
    • 2016
  • Background: Radiation dose rates in PRIDE facility is evaluated quantitatively for assessing radiation safety of workers because of large amounts of depleted uranium being handled in PRIDE facility. Even if direct radiation from depleted uranium is very low and will not expose a worker to significant amounts of external radiation. Materials and Methods: ORIGEN-ARP code was used for calculating the neutron and gamma source term being generated from depleted uranium (DU), and the MCNP5 code was used for calculating the neutron and gamma fluxes and dose rates. Results and Discussion: The neutron and gamma fluxes and dose rates due to DU on spherical surface of 30 cm radius were calculated with the variation of DU mass and density. In this calculation, an imaginary case in which DU density is zero was added to check the self-shielding effect of DU. In this case, the DU sphere was modeled as a point. In case of DU mixed with molten salt of 50-250 g, the neutron and gamma fluxes were calculated respectively. It was found that the molten salt contents in DU had little effect on the neutron and the gamma fluxes. The neutron and the gamma fluxes, under the respective conditions of 1 and 5 kg mass of DU, and 5 and $19.1g{\cdot}cm^{-3}$ density of DU, were calculated with the molten salt (LiCl+KCl) of 50 g fixed, and compared with the source term. As the results, similar tendency was found in neutron and gamma fluxes with the variation of DU mass and density when compared with source spectra, except their magnitudes. Conclusion: In the case of the DU mass over 5 kg, the dose rate was shown to be higher than the environmental dose rate. From these results, it is concluded that if a worker would do an experiment with DU having over 5 kg of mass, the worker should be careful in order not to be exposed to the radiation.

Feasibility study of β-ray detection system for small leakage from reactor coolant system

  • Jang, Jaeyeong;Jeong, Jae Young;Park, Junesic;Cho, Young-Sik;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2748-2754
    • /
    • 2022
  • Because existing reactant coolant system (RCS) leakage detection mechanisms are insensitive to small leaks, a real-time, direct detection system with a detection threshold below 0.5 gpm·hr-1 was studied. A beta-ray detection system using a silicon detector with good energy resolution for beta rays and a low gamma-ray response was proposed. The detection performance in the leakage condition was evaluated through experiments and simulations. The concentration of 16N in the coolant corresponding to a coolant leakage of 0.5 gpm was calculated using the analytic method and ORIGEN-ARP. Based on the concentration of 16N and the measurement of the silicon detector with 90Sr/90Y, the beta-ray count rate was estimated using MCNPX. To evaluate the effect of gamma rays inside the containment building, the signal-to-noise ratio (SNR) was calculated. To evaluate the count rate ratio, the radiation field inside the containment building was simulated using MCNPX, and response evaluation experiments were performed using beta and gamma rays on the silicon detector. The expected beta-ray count rate at 0.5 gpm leakage was 7.26 × 105 counts/sec, and the signal-to-background count rate ratio exceeded 88 for a transport time of 10 s, demonstrating its suitability for operation inside a reactor containment building.

사보타주 공격으로 인한 사용후핵연료 운반용기 격납 실패시 핵연료 손상에 따른 방사선 영향 평가 (Evaluation of Radiation Effect on Damage to Nuclear Fuel of Spent Fuel Transport CASK due to Sabotage Attack)

  • 박기호;김종성;차건일;박창제
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.43-49
    • /
    • 2022
  • The purpose of this study is to evaluate the radiation effect on damage when the external shield of the spent nuclear fuel transport cask is damaged due to impact as the cause of an unexpected accident. The neutron and gamma-ray intensities and spectra are calculated using the ORIGEN-Arp module in the SCALE 6.2.4 code package(1) and then using MCNP6.2(2) code calculate the dose rate. In order to evaluate the radiation dose according to the size of damage caused by external impact, various sized holes of 0.3~13.7% are assumed in the outer shield of the cask to evaluate the sensitivity to the dose. In the case of radiation source leakage, damage to the nuclear fuel assembly is assumed to be up to 6% based on overseas test cases. When only the outer shield is damaged, the maximum surface dose is calculated as 3.12E+03 mSv/hr. However, if the radiation source is leaked due to damage to the nuclear fuel assembly, it becomes 7.00E+05 mSv/hr which is about 200 times greater than the former case.

사용후핵연료 운반용기 방사선적 안전성평가에 관한 연구 (A Study on Radiation Safety Evaluation for Spent Fuel Transportation Cask)

  • 최영환;고재훈;이동규;정인수
    • 방사성폐기물학회지
    • /
    • 제17권4호
    • /
    • pp.375-387
    • /
    • 2019
  • 본 연구에서는 최근 개발중인 360 다발 장전용량의 중수로 사용후핵연료 운반용기에 대한 설계기준연료의 방사선원항 평가와 용기외부에서의 방사선량률 계산을 수행하였다. 그리고 국·내외 방사선적 안전성평가와 관련한 기술기준 부합여부를 판단하고 결과의 적합성을 제시하였다. 방사선원항으로 작용하는 설계기준연료 선정을 위해 월성원전에서 운영중인 운반 용기 및 두 가지 방식의 건식저장시설에 적용된 설계기준연료의 사양 및 특성을 조사하였다. 각 운반·저장 시스템 별 설계 기준연료의 연소도, 최소 냉각기간 및 중간저장시설로의 운반시점 등을 바탕으로 연소도 7,800 MWD/MTU와 최소 냉각기간 6년을 설계기준연료로 설정하였다. 설계기준연료의 방사선원항은 SCALE 전산코드의 ORIGEN-ARP모듈을 이용하여 평가하였다. 운반용기의 방사선차폐평가는 MCNP6 전산코드를 이용하였으며, 기술기준에서 요구하는 운반용기 외부에서의 방사선량률 평가를 정상 및 사고조건으로 구분하여 수행하였다. 방사선량률 평가결과, 정상운반조건의 운반용기 표면 및 운반용기 표면 2 m 이격지점에서 계산된 최대 방사선량률은 각각 0.330 mSv·h-1와 0.065 mSv·h-1로 도출되어 선량률 제한치인 2.0 mSv·h-1와 0.1 mSv·h-1를 모두 만족하는 결과를 도출하였다. 또한 운반사고조건하 운반용기 표면 1 m 지점에서의 최대 방사선량률은 0.321 mSv·h-1로서 기술기준인 10.0 mSv·h-1 미만으로 평가되어, 대용량 중수로 사용후핵연료 운반용기는 방사선적 안전성을 확보하는 것으로 나타났다.

심지층 처분시스템 설계를 위한 중수로 사용후핵연료 현황 및 선원항 분석 (Current Status and Characterization of CANDU Spent Fuel for Geological Disposal System Design)

  • 조동건;이승우;차정훈;최종원;이양;최희주
    • 방사성폐기물학회지
    • /
    • 제6권2호
    • /
    • pp.155-162
    • /
    • 2008
  • 후행 핵연료주기 경제성 평가는 추정 비용의 불확실성, 평가 대상기간의 장기성, 적용 할인율에 따른 계산결과의 변동성 등 많은 불확실성을 내포하고 있기 때문에 평가기관 또는 평가자에 따라 그 결과가 서로 상이하다. 본고에서는 지금까지 수행 된 주요 경제성 평가 연구들을 조사/분석하여 그 특징과 한계를 알아봄으로써 현재 국내에서 추진되고 있는 사용후핵연료 공론화 및 후행 핵연료주기 정책 연구 추진에 기초자료로 활용될 수 있도록 하고자 하였다. 분석 결과 사용후핵연료 재활용 옵션에 비해 직접처분 옵션이 유리하나, 입력 자료로 사용된 파라미터 값에 따라 결과의 불확실성이 많이 나타나 이 부분에 대한 추가적인 연구가 필요하다는 사실을 알 수 있었다.

  • PDF