• Title/Summary/Keyword: OPTIMIZATION

Search Result 21,596, Processing Time 0.062 seconds

Dose Evaluation of TPS according to Treatment Sites in IMRT (세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가)

  • Kim, Jin Man;Kim, Jong Sik;Hong, Chae Seon;Park, Ju Young;Park, Su Yeon;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

  • PDF

Survey of Technical Parameters for Pediatric Chest X-ray Imaging by Using Effective DQE and Dose (유효검출양자효율과 선량을 이용한 소아 흉부 X-선 영상의 기술적인 인자에 관한 조사)

  • Park, Hye-Suk;Kim, Ye-Seul;Kim, Sang-Tae;Park, Ok-Seob;Jeon, Chang-Woo;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.163-171
    • /
    • 2011
  • The purpose of this study was to investigate the effect of various technical parameters for the dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE) including the scatter radiation from the object, the blur caused by the focal spot, geometric magnification and detector characteristics. For the tube voltages ranging from 40 to 90 kVp in 10 kVp increments at the FDD of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at the same effective dose. The results showed that the eDQE was largest at 60 kVp when compares the eDQE at different tube voltage. Especially, the eDQE was considerably higher without the use of an anti-scatter grid on equivalent effective dose. This indicates that the reducing the scatter radiation did not compensate for the loss of absorbed effective photons in the grid. When the grid is not used the eDQE increased with increasing FDD because of the greater effective modulation transfer function (eMTF). However, most of major hospitals in Korea employed a short FDD of 100 cm with an anti-scatter grid for the chest radiological examination of a 15 month old infant. As a result, the entrance surface air kerma (ESAK) values for the hospitals of this survey exceeded the Korean DRL (diagnostic reference level) of $100{\mu}Gy$. Therefore, appropriate technical parameters should be established to perform pediatric chest examinations on children of different ages. The results of this study may serve as a baseline to establish detailed reference level of pediatric dose for different ages.

Re-Analysis of Clark Model Based on Drainage Structure of Basin (배수구조를 기반으로 한 Clark 모형의 재해석)

  • Park, Sang Hyun;Kim, Joo Cheol;Jeong, Dong Kug;Jung, Kwan Sue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2255-2265
    • /
    • 2013
  • This study presents the width function-based Clark model. To this end, rescaled width function with distinction between hillslope and channel velocity is used as time-area curve and then it is routed through linear storage within the framework of not finite difference scheme used in original Clark model but analytical expression of linear storage routing. There are three parameters focused in this study: storage coefficient, hillslope velocity and channel velocity. SCE-UA, one of the popular global optimization methods, is applied to estimate them. The shapes of resulting IUHs from this study are evaluated in terms of the three statistical moments of hydrologic response functions: mean, variance and the third moment about the center of IUH. The correlation coefficients to the three statistical moments simulated in this study against these of observed hydrographs were estimated at 0.995 for the mean, 0.993 for the variance and 0.983 for the third moment about the center of IUH. The shape of resulting IUHs from this study give rise to satisfactory simulation results in terms of the mean and variance. But the third moment about the center of IUH tend to be overestimated. Clark model proposed in this study is superior to the one only taking into account mean and variance of IUH with respect to skewness, peak discharge and peak time of runoff hydrograph. From this result it is confirmed that the method suggested in this study is useful tool to reflect the heterogeneity of drainage path and hydrodynamic parameters. The variation of statistical moments of IUH are mainly influenced by storage coefficient and in turn the effect of channel velocity is greater than the one of hillslope velocity. Therefore storage coefficient and channel velocity are the crucial factors in shaping the form of IUH and should be considered carefully to apply Clark model proposed in this study.

Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms (유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링)

  • Noh, Heeryong;Choi, Seulbi;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.19-38
    • /
    • 2017
  • Collaborative filtering (CF) algorithm has been popularly used for implementing recommender systems. Until now, there have been many prior studies to improve the accuracy of CF. Among them, some recent studies adopt 'hybrid recommendation approach', which enhances the performance of conventional CF by using additional information. In this research, we propose a new hybrid recommender system which fuses CF and the results from the social network analysis on trust and distrust relationship networks among users to enhance prediction accuracy. The proposed algorithm of our study is based on memory-based CF. But, when calculating the similarity between users in CF, our proposed algorithm considers not only the correlation of the users' numeric rating patterns, but also the users' in-degree centrality values derived from trust and distrust relationship networks. In specific, it is designed to amplify the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the trust relationship network. Also, it attenuates the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the distrust relationship network. Our proposed algorithm considers four (4) types of user relationships - direct trust, indirect trust, direct distrust, and indirect distrust - in total. And, it uses four adjusting coefficients, which adjusts the level of amplification / attenuation for in-degree centrality values derived from direct / indirect trust and distrust relationship networks. To determine optimal adjusting coefficients, genetic algorithms (GA) has been adopted. Under this background, we named our proposed algorithm as SNACF-GA (Social Network Analysis - based CF using GA). To validate the performance of the SNACF-GA, we used a real-world data set which is called 'Extended Epinions dataset' provided by 'trustlet.org'. It is the data set contains user responses (rating scores and reviews) after purchasing specific items (e.g. car, movie, music, book) as well as trust / distrust relationship information indicating whom to trust or distrust between users. The experimental system was basically developed using Microsoft Visual Basic for Applications (VBA), but we also used UCINET 6 for calculating the in-degree centrality of trust / distrust relationship networks. In addition, we used Palisade Software's Evolver, which is a commercial software implements genetic algorithm. To examine the effectiveness of our proposed system more precisely, we adopted two comparison models. The first comparison model is conventional CF. It only uses users' explicit numeric ratings when calculating the similarities between users. That is, it does not consider trust / distrust relationship between users at all. The second comparison model is SNACF (Social Network Analysis - based CF). SNACF differs from the proposed algorithm SNACF-GA in that it considers only direct trust / distrust relationships. It also does not use GA optimization. The performances of the proposed algorithm and comparison models were evaluated by using average MAE (mean absolute error). Experimental result showed that the optimal adjusting coefficients for direct trust, indirect trust, direct distrust, indirect distrust were 0, 1.4287, 1.5, 0.4615 each. This implies that distrust relationships between users are more important than trust ones in recommender systems. From the perspective of recommendation accuracy, SNACF-GA (Avg. MAE = 0.111943), the proposed algorithm which reflects both direct and indirect trust / distrust relationships information, was found to greatly outperform a conventional CF (Avg. MAE = 0.112638). Also, the algorithm showed better recommendation accuracy than the SNACF (Avg. MAE = 0.112209). To confirm whether these differences are statistically significant or not, we applied paired samples t-test. The results from the paired samples t-test presented that the difference between SNACF-GA and conventional CF was statistical significant at the 1% significance level, and the difference between SNACF-GA and SNACF was statistical significant at the 5%. Our study found that the trust/distrust relationship can be important information for improving performance of recommendation algorithms. Especially, distrust relationship information was found to have a greater impact on the performance improvement of CF. This implies that we need to have more attention on distrust (negative) relationships rather than trust (positive) ones when tracking and managing social relationships between users.

Optimization of Analytical Methods for Ochratoxin A and Zearalenone by UHPLC in Rice Straw Silage and Winter Forage Crops (UHPLC를 이용한 볏짚 사일리지와 동계사료작물의 오크라톡신과 제랄레논 분석법 최적화)

  • Ham, Hyeonheui;Mun, Hye Yeon;Lee, Kyung Ah;Lee, Soohyung;Hong, Sung Kee;Lee, Theresa;Ryu, Jae-Gee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.333-339
    • /
    • 2016
  • The objective of this study was to optimize analytical methods for ochratoxin A (OTA) and zearalenone (ZEA) in rice straw silage and winter forage crops using ultra-high performance liquid chromatography (UHPLC). Samples free of mycotoxins were spiked with $50{\mu}g/kg$, $250{\mu}g/kg$, or $500{\mu}g/kg$ of OTA and $300{\mu}g/kg$, $1500{\mu}g/kg$, or $3000{\mu}g/kg$ of ZEA. OTA and ZEA were extracted by acetonitrile and cleaned-up using an immunoaffinity column. They were then subjected to analysis with UHPLC equipped with a fluorescence detector. The correlation coefficients of calibration curves showed high linearity ($R^2{\geq_-}0.9999$ for OTA and $R^2{\geq_-}0.9995$ for ZEA). The limit of detection and quantification were $0.1{\mu}g/kg$ and $0.3{\mu}g/kg$, respectively, for OTA and $5{\mu}g/kg$ and $16.7{\mu}g/kg$, respectively, for ZEA. The recovery and relative standard deviation (RSD) of OTA were as follows: rice straw = 84.23~95.33%, 2.59~4.77%; Italian ryegrass = 79.02~95%, 0.86~5.83%; barley = 74.93~97%, 0.85~9.19%; rye = 77.99~96.67%, 0.33~6.26%. The recovery and RSD of ZEA were: rice straw = 109.6~114.22%, 0.67~7.15%; Italian ryegrass = 98.01~109.44%, 1.65~4.81%; barley = 98~113.53%, 0.25~5.85%; rye = 90.44~108.56%, 2.5~4.66%. They both satisfied the standards of European Commission criteria (EC 401-2006) for quantitative analysis. These results showed that the optimized methods could be used for mycotoxin analysis of forages.

Optimization of Tube Voltage according to Patient's Body Type during Limb examination in Digital X-ray Equipment (디지털 엑스선 장비의 사지 검사 시 환자 체형에 따른 관전압 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.379-385
    • /
    • 2017
  • This study identifies the optimal tube voltages depending on the changes in the patient's body type for limb tests using a digital radiography (DR) system. For the upper-limp test, the dose area product (DAP) was fixed at $5.06dGy{\ast} cm^2$, and for the lower-limb test, the DAP was fixed at $5.04dGy{\ast} cm^2$. Afterwards, the tube voltage was changed to four different stages and the images were taken three times at each stage. The thickness of the limbs was increased by 10 mm to 30 mm to change in the patient's body type. For a quantitative evaluation, Image J was used to calculate the contrast to noise ratio (CNR) and signal to noise ratio (SNR) among the four groups, according to the tube voltage. For statistical testing, the statistically significant differences were analyzed through the Kruskal-Wallis test at a 95% confidence level. For the qualitative analysis of the images, the pre-determined items were evaluated based on a 5-point Likert scale. In both upper-limb and lower-limb tests, the more the tube voltage increased, the more the CNR and SNR of the images decreased. The test on the changes depending on the patient's body shape showed that the more the thickness increased, the more the CNR and SNR decreased. In the qualitative evaluation on the upper limbs, the more the tube voltage increased, the more score increased to 4.6 at the maximum of 55kV and 3.6 at 40kV, respectively. The mean score for the lower limbs was 4.4, regardless of the tube voltage. The more either the upper or lower limbs got thicker, the more the score generally decreased. The score of the upper limps sharply dropped at 40kV, whereas that of the lower limps sharply dropped at 50kV. For patients with a standard thickness, the optimized images can be obtained when taken at 45kV for the upper limbs, and at 50kV for the lower limbs. However, when the thickness of the patient's limbs increases, it is best to set the tube voltage at 50 kV for the upper limbs and at 55 kV for the lower limbs.

Optimization of the Flip Angle and Scan Timing in Hepatobiliary Phase Imaging Using T1-Weighted, CAIPIRINHA GRE Imaging

  • Kim, Jeongjae;Kim, Bong Soo;Lee, Jeong Sub;Woo, Seung Tae;Choi, Guk Myung;Kim, Seung Hyoung;Lee, Ho Kyu;Lee, Mu Sook;Lee, Kyung Ryeol;Park, Joon Hyuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: This study was designed to optimize the flip angle (FA) and scan timing of the hepatobiliary phase (HBP) using the 3D T1-weighted, gradient-echo (GRE) imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique on gadoxetic acid-enhanced 3T liver MR imaging. Materials and Methods: Sixty-two patients who underwent gadoxetic acid-enhanced 3T liver MR imaging were included in this study. Four 3D T1-weighted GRE imaging studies using the CAIPIRINHA technique and FAs of $9^{\circ}$ and $13^{\circ}$ were acquired during HBP at 15 and 20 min after intravenous injection of gadoxetic acid. Two abdominal radiologists, who were blinded to the FA and the timing of image acquisition, assessed the sharpness of liver edge, hepatic vessel clarity, lesion conspicuity, artifact severity, and overall image quality using a five-point scale. Quantitative analysis was performed by another radiologist to estimate the relative liver enhancement (RLE) and the signal-to-noise ratio (SNR). Statistical analyses were performed using the Wilcoxon signed rank test and one-way analysis of variance. Results: The scores of the HBP with an FA of $13^{\circ}$ during the same delayed time were significantly higher than those of the HBP with an FA of $9^{\circ}$ in all the assessment items (P < 0.01). In terms of the delay time, images at the same FA obtained with a 20-min-HBP showed better quality than those obtained with a 15-min-HBP. There was no significant difference in qualitative scores between the 20-min-HBP and the 15-min-HBP images in the non-liver cirrhosis (LC) group except for the hepatic vessel clarity score with $9^{\circ}$ FA. In the quantitative analysis, a statistically significant difference was found in the degree of RLE in the four HBP images (P = 0.012). However, in the subgroup analysis, no significant difference in RLE was found in the four HBP images in either the LC or the non-LC groups. The SNR did not differ significantly in the four HBP images. In the subgroup analysis, 20-min-HBP imaging with a $13^{\circ}$ FA showed the highest SNR value in the LC-group, whereas 15-min-HBP imaging with a $13^{\circ}$ FA showed the best value of SNR in the non-LC group. Conclusion: The use of a moderately high FA improves the image quality and lesion conspicuity on 3D, T1-weighted GRE imaging using the CAIPIRINHA technique on gadoxetic acid, 3T liver MR imaging. In patients with normal liver function, the 15-min-HBP with a $13^{\circ}$ FA represents a feasible option without a significant decrease in image quality.

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer (소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구)

  • Lee, Hoon-Hee;Jung, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, a Small-sized and planer resonator design of Magnetic Resonance - Wireless Power Transfer(MR-WPT) were proposed for practical applications of mobile devices, such as a laptop, a smart-phone and a tablet pc. The proposed MR-WPT system were based on four coil MR-WPT and designed as a transmitter part (Tx) and a receiver part (Rx) both are the same shape with the same loop and resonator. There are four different spiral coil type of resonators with variable of line length, width, gap and turns in $50mm{\times}50mm$ size. The both of top and bottom side of substrate(acrylic; ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$) ere used to generate high inductance and capacitance in limited small volume. Loops were designed on the same plane of resonator to reduce their volume, and there are three different size. The proposed MR-WPT system were fabricated with two acrylic substrate plane of Tx and Rx each, the Rx and Tx loops and resonators were fabricated of copper sheets. There are 12 combinations of 3 loops and 4 resonators, each combination were measured to calculate transfer efficiency and resonance frequency in transfer distance from 1cm to 5cm. The measured results, the highest transfer efficiency was about 70%, and average transfer efficiency was 40%, on the resonance frequency was about 6.78 MHz, which is standard band by A4WP. We proposed small-sized and planer resonator of MR-WPT and showed possibility of mobile applications for small devices.