• Title/Summary/Keyword: OPM

Search Result 48, Processing Time 0.025 seconds

A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures (복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

Evolution of surface morphology and roughness in Si and $_{0.7}$Ge$_{0.3}$ thin fimls (Si 및Si$_{0.7}$Ge$_{0.3}$ 박막의 표현형태 및 조도의 전개)

  • 이내웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.345-358
    • /
    • 1998
  • The evolution of surface roughness and morphology in epitaxial Si and $Si_{0.7}Ge{0.3}$ alloys grown by UHV opm-beam sputter deposition onto nominally-singular, [100]-, and [110]-mi-scut Si(001) was investigated by stomic force microscopy and trasmission electron microscopy. The evolution of surface roughness of epitaxial Si films grown at $300^{\circ}C$ is inconsistent with conventional scaling and hyperscaling laws for kineti roughening. Unstable growth leading to the formation of mounds separated by a well-defined length scale is observed on all substrates. Contraty to previous high-temperature growth results, the presence of steps during deposition at $300^{\circ}C$ increases the tendency toward unstable growth resulting in a much earlier development of mound structures and larger surface roughnesses on vicival substrates. Strain-induced surface roughening was found to dominate in $Si_{0.7}Ge{0.3}$ alloys grown on singular Si(001) substrates at $T_S\ge450^{\circ}C$ where the coherent islands are prererentially bounded along <100> directions and eshibt {105} facetting. Increasing the film thickness above critical values for strain relaxation leads to island coalescence and surface smoothening. At very low growth temperatures ($T_s\le 250^{\circ}C$), film surfaces roughen kinetically, due to limited adatom diffusiviry, but at far lower rates than in the higher-temperature strain-induced regime. There is an intermediate growth temperature range, however, over which alloy film surfaces remain extremely smooth even at thicknesses near critical values for strain relaxation.

  • PDF

A Project Competency Assessment Model for Small and Medium Enterprises (중소기업을 위한 프로젝트 수행역량 평가모델)

  • Lim, Hyung-Jeong;Baek, Dong-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.32-44
    • /
    • 2012
  • The competitiveness of modern organizations highly depends upon organizational competencies rather than individual competencies. However, most of previous studies on project success focused on individual competencies, such as project manager's competency and leadership. Even though there are some assessment models for the organizational project competencies, they are limited in specific organizations and industries. Furthermore, it is difficult to apply them to domestic companies, especially to small and medium enterprises because some assessment items are inappropriate for them. The purpose of this study is to propose an organizational project competency assessment model that is suitable for evaluating small and medium enterprises. First, the assessment areas and items for each area are determined through extensive investigation of previous models including OPM3, CMMI, and PMBOK. Next, the weights of assessment areas and items are decided by AHP analysis of experts response in the field of the project management. Finally, a project competency assessment model with assessment sheets is proposed. The model proposed in this study might support managers of small and medium enterprises to find pros and cons of project competencies and to establish improvement plans.

RCS Analysis of Complex Structures Using Object Precision Method (Object Precision 방법을 이용한 복합 구조물의 RCS 해석)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.159-164
    • /
    • 2005
  • Monostatic RCS analysis of complex structures has been done with a combined method of physical and geometric optics, commonly applied to high frequency electromagnetic backscattering problems. In the analysis, the complex structure is modeled as a number of flat surfaces and the RCS of whole structure is calculated by summing RCS of each surface, which can be obtained from an analytical solution of flat surface phase integral derived from physical optics. The reflected and hidden surfaces are searched by an object precision method based on adaptive triangular beam method, which can take account for effects of multiple reflections and polarizations of electromagnetic wave. The validity of the presented RCS analysis method has been verified by comparing with exact solutions and measured data for various structures.

Fatigue and mechanical properties of laser deposited maraging steel (레이저 적층 마레이징강의 기계적 특성 및 피로 특성)

  • Hong, Seok-Kwan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.36-41
    • /
    • 2018
  • Metal 3D printing is very useful for making the injection molds containing complex conformal cooling channels. The most important issue of the 3D printed molds is cost and life cycle. However, powder bed fusion (PBF) methods are vulnerable to fatigue loading because of the presence of pores and rough surfaces. In the present study, the fatigue test was performed to obtain fatigue analysis input data for predicting the durability of a 3D printed injection mold core. The metal 3D printer used to manufacture the specimen was OPM250L from Sodick, and the metal powder material was maraging steel. The ultrasonic fatigue testing method was adopted for the fatigue test. A key advantage of the ultrasonic fatigue method is that $10^8{\sim}10^9$ long cycle test data or more could be obtained within a relatively short period. Based on the results of the experiment, the effect of heat treatment was negligible. However, there was an apparent difference in durability depending on the presence or absence of the surface treatment.

Post Trajectory Insertion Performance Analysis of Korea Pathfinder Lunar Orbiter Using SpaceX Falcon 9

  • Young-Joo Song;Jonghee Bae;SeungBum Hong;Jun Bang;Donghun Lee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.123-129
    • /
    • 2023
  • This paper presents an analysis of the trans-lunar trajectory insertion performance of the Korea Pathfinder Lunar Orbiter (KPLO), the first lunar exploration spacecraft of the Republic of Korea. The successful launch conducted on August 4, 2022 (UTC), utilized the SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station. The trans-lunar trajectory insertion performance plays a crucial role in ensuring the overall mission success by directly influencing the spacecraft's onboard fuel consumption. Following separation from the launch vehicle (LV), a comprehensive analysis of the trajectory insertion performance was performed by the KPLO flight dynamics (FD) team. Both orbit parameter message (OPM) and orbit determination (OD) solutions were employed using deep space network (DSN) tracking measurements. As a result, the KPLO was accurately inserted into the ballistic lunar transfer (BLT) trajectory, satisfying all separation requirements at the target interface point (TIP), including launch injection energy per unit mass (C3), right ascension of the injection orbit apoapsis vector (RAV), and declination of the injection orbit apoapsis vector (DAV). The precise BLT trajectory insertion facilitated the smoother operation of the KPLO's remainder mission phase and enabled the utilization of reserved fuel, consequently significantly enhancing the possibilities of an extended mission.

A Study on Security Risk according to the activation of Bio-Authentication Technology (바이오 인증 기술의 활성화에 따른 보안 위험성에 관한 연구)

  • Jeon, Jeong Hoon
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.57-63
    • /
    • 2016
  • In recent years, there is growing interest in 'Fin-tech' in the domestic and international financial sector. And a variety of services in such a situation has emerged. To ensure the safety of from hacking attacks, many new technologies have been developed. These leading technology is the Bio-authentication method that you consider applying to the financial sector. Bio authentication is using biometric information. Also it is known that can cope the threat of fabrication and modifying attacks with shared and stored. However, Recently, When you look at hacking incidents of biometric data(560 million cases) in the United States Office of Personnel Management and advent of the fingerprints counterfeit technology, We can be known that should be reconsidered about the safety of bio-certification. Especially, it should be provided with a response measures for the problem of embezzlement that biometric information already been leaked. Thereby In this paper, by investigating biometric technologies and practices applied and of the vulnerability factor in many industries, it expected to be utilized in the prepared threats countermeasures in accordance with the application of the biometric authentication technology in a future.

Construction Based Model for Assessing Maturity Level of Enterprises

  • Marzouk, Mohamed;Attia, Tarek;El-Bendary, Nasr Eldin
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • Maturity models allow organizations to assess and compare their own practices against best practices or those employed by competitors, with the intention to map out a structured path to improvement. This research explores the aspects of the Maturity Models that are relevant to distinguish them from one to another. The different Project Management maturity models for define maturity differently and measure different things to determine maturity. Because of this, organizations should give careful consideration to select appropriate maturity model. The main reason behind this research lies on the modification to the existing Organizational Project Management Maturity Model (OPM3) by adding four knowledge areas, dedicated to construction industry as best practices. These are Safety, Environment, Financial and Claim Management. This Model contains (Yes/No) questions; all of these questions must be answered before the user reviews the results that describe the overall maturity and areas of strength and weakness of an organization. The research presents the implementation of the proposed Model Construction Enterprises Maturity Model (CEM2). All the components of the developed Model have been implemented in Microsoft Access. CEM2 helps Construction Enterprises to assess their Maturity Level and know Areas of Weaknesses for future improvement. The easy to use Yes/No user interfaces help enterprises' employees to assess the maturity level of their enterprises. The Model maintains users' responses in its database; as such, many employees from different enterprise divisions can be involved during assessment phase in several sessions.

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.

Revision of the Input Parameters for the Prediction Models of Smoke Detectors Based on the FDS (FDS 기반의 연기감지기 예측모델을 위한 입력인자 재검토)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.44-51
    • /
    • 2017
  • Accurate predictions of the activation time for smoke detectors using a fire simulation is are required to ensure the reliability of the RSET (Required Safe Egress Time) calculation in the process of PBD (Performance-Based Design). The objective of this study was to enhance the accuracy of input parameters for the numerical models of smoke detector based on the FDS. To this end, a Fire Detector Evaluator (FDE) developed in previous studies was improved. The uniformities of flow and smoke inside the FDE were improved and accurate measurements of the obscuration per meter (OPM) related to detector operation were also performed through a decrease in the forward scattering of smoke particles. The input parameters using the improved FDE showed a significant difference from the previous FDE quantitatively. In particular, a larger difference was found in a photoelectric detector compared to an ionization detector. Considering that the operating conditions of smoke detectors are affected by the detector type, combustibles, smoke particulars, and color, the database (DB) on the input parameters for various detectors and combustibles should be built to improve the reliability of PBD in future studies.