• Title/Summary/Keyword: OLED materials

Search Result 462, Processing Time 0.024 seconds

A flexible OTFT-OLED display using solution-processed organic dielectrics

  • Hirai, Nobukazu;Katsuhara, Mao;Yagi, Iwao;Yasuda, Ryoichi;Ushikura, Shin-Ich;Noda, Makoto;Moriwaki, Toshiki;Imaoka, Ayaka;Yoneya, Nobuhide;Yumoto, Akira;Nomoto, Kazumasa;Urabe, Tetsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.131-134
    • /
    • 2009
  • We have developed a flexible OTFT backplane in which all the dielectrics are formed by solutionprocess in order to achieve low-cost and highthroughput manufacturing. The backplane successfully drives a flexible AM-OLED display with peak brightness of > 200 nit and the contrast ratio of > 1000:1 with great mechanical flexibility.

  • PDF

Highly Efficient Phosphorescence Emitting Materials and Applications to Organic Light Emitting Diode

  • Sung, Lee-Bum;Yun, Jung-Sang;Nam, Byun-Ki;Sung, Yu-Han;Lee, Yoo-JIn;Kim, Sung-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1143-1146
    • /
    • 2005
  • Novel series of electron-transporting hosts, pentavalent aluminum complexes containing 8 hydroxyquinoline ligands and various phenolato ligands were synthesized, and organic light-emitting diodes (OLEDs) were fabricated using these complexes as host materials of phosphorescent emitting device and the fabricated phosphorescent emitting device showed low driving voltage, high efficiency at high current density and good stability under conventional driving condition.

  • PDF

A Study on Development of PLD Process for PM OLED Device Manufacture (PM OLED 디바이스 제작을 위한 PLD 공정 개발에 관한 연구)

  • Lee, Eui-Sik;Lee, Byoung-Wook;Kim, Chang-Kyo;Hong, Jin-Su;Park, Sung-Hoon;Moon, Soon-Kwun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.264-266
    • /
    • 2005
  • Manufacture of OLED device used thermal evaporation method. However thermal evaporation method has many defect as thermal damage of substrate, difficult of dopant rate control and low utilization of organic materials. so we suggest PLD(Pulsed Laser Deposition) method that solution of these problems. PLD method has many advantage as without thermal damage, easy indicate of deposition rate per one pulse and good utilization of organic materials. In this paper we apply the PLD method for manufacture of device so we present high efficiency device manufacture using PLD method that has good deposition uniformity, surface rough and deposition rate.

  • PDF

Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process (OLED 박막 증착공정에서 유도로 내부의 분자유동 해석)

  • Sung, Jae-Yong;Lee, Eung-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.

Encapsulation Method of OLED with Organic-inorganic Protective Thin Films Sealed with Flat Glass (평판 유리로 봉인된 유-무기 보호 박막을 갖는 OLED 봉지 방법)

  • Park, Min-Kyung;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.381-386
    • /
    • 2012
  • To study encapsulation method for large-area organic light emitting diodes (OLEDs), red emitting OLEDs were fabricated, on which $Alq_3$ as organic buffer layer and LiF and Al as inorganic protective layers were deposited to protect the damage of OLED by epoxy. And then the OLEDs were attached to flat glass by printing method using epoxy. The basic structure of OLED doped with rubrene of 1 vol.% as emitting layer is ITO(150 nm) / 2-TNATA(50 nm) / ${\alpha}$-NPD(30 nm) / $Alq_3$:Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). In case of depositing $Alq_3$, LiF and Al and then attaching of flat glass onto OLED, current density, luminance, efficiency and driving voltage were not changed and lifetime was increased according to thickness of Al as inorganic protective layers. The lifetime of OLED/$Alq_3$/LiF/Al_4/glass structure was 139 hours increased by 15.8 times more than bare OLED of 8.8 hours and 1.6 times more than edge sealed OLED of 54.5 hours.

Characteristics of phosphorescent OLEDs and flexible OLED fabricated indium-zinc-tin-oxide anode (IZTO 애노드를 이용하여 제작한 인광 OLED 및 플랙시블 OLED 특성)

  • Choi, Kwang-Hyuk;Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Jin-A;Kim, Han-Ki;Kang, Jae-Wook;Kim, Jang-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.399-400
    • /
    • 2007
  • In this work, we have investigated the characteristics of the phosphorescent OLED and flexible OLED fabricated on IZTO/glass and IZTO/PET anode film grown by magnetron sputtering, respectively. Electrical and optical characteristics of amorphous IZTO/glass anode exhibited similar to commercial ITO anode even though it was deposited at room temperature. In addition, the amorphous IZTO anode showed higher work function than that of the commercial ITO anode after ozone treatment for 10 minutes. Furthermore, a phosphorescent OLED fabricated on amorphous IZTO anode film showed improved current-voltage-luminance characteristics, external quantum efficiency and power efficiency in contrast with phosphorescent OLED fabricated on commercial ITO anode film. This indicates that IZTO anode is promising alternative anode materials for anode in OLEDs and flexible OLEDs.

  • PDF

Change of Internal Resistance of OLED Devices during Operation

  • Lee, Soon-Seok;Hwang, Hak-Eun;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1443-1446
    • /
    • 2007
  • The luminance and operating voltage were measured during OLED operation for the purpose of analyzing the efficiency and change of internal resistance. The half lifetime of OLED was affected by degradation of OLED due to heat generated by ambient temperature and self heating. The operating voltage constantly increased due to the increase of internal resistance. The half lifetime of OLED driven by constant current source was found to be longer than that of the OELD driven by constant voltage and the reasons were clearly explained in this paper.

  • PDF

Dependence of Resistance and Capacitance of Organic light Emitting diode (OLED) on Applied Voltage

  • Lee, Soon-Seok;Im, Woo-Bin;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.446-449
    • /
    • 2008
  • Organic light emitting diodes (OLEDs) with multiple organic layers were fabricated to obtain and to evaluate an equivalent resistance and an equivalent capacitance of OLED device. The staircase voltage with an increasing period and a constant period was designed and applied to the OLED. The resistance of OLED was found to decrease from $270\;k{\Omega}$ to $2\;K{\Omega}$ as applied voltage increased after turn on. The equivalent capacitance of OLED maintained unchanged at low voltage level and deceased after showing peak value as the applied voltage increased.

  • PDF

Passivation Properties of SiNx Thin Film for OLEO Device (SiNx 박막에 의한 OLED 소자의 보호막 특성)

  • Ju Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.758-763
    • /
    • 2006
  • We has been studied the thin film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation properties of the passivation layer materials, we have carried out the fabrication of green light emitting diodes with ultra violet(UV) light absorbing polymer resin, $SiO_2,\;and\;SiN_x$, respectively. From the measurement results of shrinkage properties according to the exposure time to the atmosphere, we found that $SiN_x$ thin film is the best material for passivation layer. We have investigated the emission efficiency and life time of OLED device using the package structure of $OLED/SiN_x/polymer$ resin/Al/polymer resin. The emission efficiency of this OLED device was 13 lm/W and life time was about 2,000 hours, which reach 95 % of the performance for the OLED encapsulated with metal.