• Title/Summary/Keyword: OLED(Organic Luminescent Emitting Device)

Search Result 9, Processing Time 0.024 seconds

Evaporation Process Modeling for Large OLED Mass-fabrication System (대면적 유기EL 양산 장비 개발을 위한 증착 공정 모델링)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.29-34
    • /
    • 2006
  • In order to design an OLED(Organic Luminescent Emitting Device) evaporation system, geometric simulation of film thickness distribution profile is required. For the OLED evaporation process, thin film thickness uniformity is of great practical importance. In this paper, a geometric modeling algorithm is introduced for process simulation of the OLED evaporating process. The physical fact of the evaporating process is modeled mathematically. Based on the developed method, the thickness of the thin-film layer can be successfully controlled.

  • PDF

Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process (OLED 박막 증착공정에서 유도로 내부의 분자유동 해석)

  • Sung, Jae-Yong;Lee, Eung-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.

Three Dimensional Direct Monte Carlo Simulation on OLED Evaporation Process (유기EL 증착 공정에 대한 3차원 Monte Carlo 해석)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • The performance of an OLED(organic luminescent emitting device) fabrication system strongly depends on the design of the evaporation cell-source. Trends in display sizes have hauled the enlargement of mother glass substrates. The enlargement of substrates requires the improvement and the enlargement of the effusion cell-source for OLED evaporation process. The deposited layers should be as uniform as possible, and therefore it is important to know the effusion profile of the molecules emitted from the cell-source. Conventional 2D DSMC algorithm cannot be used for simulating the new concept cell-source design, such as a linear source. This work concerns the development of 3D DSMC (direct simulation Monte Carlo) analysis for simulating the behavior of the evaporation cell-sources. In this paper, the 3D DSMC algorithm was developed and the film thickness profiles were obtained by the numerical analysis.

  • PDF

Emission Characteristics of Multilayer Structure OLED (다층구조 OLED소자의 발광특성)

  • Chol, Young-Il;Cho, Su-Young
    • 전자공학회논문지 IE
    • /
    • v.48 no.4
    • /
    • pp.25-29
    • /
    • 2011
  • Organic electroluminesencent device have been studied because of its easy fabrication and high brightness for plate panel display instead of CRT and LED. There are some device structure for full color filter system can be applicable to the full color application if the blue light organic electroluminesencent device(OELD) is developed. In this study, We have investigated electro-luminescent (EL) characteristics of organic EL device using Alq3, PBD as emitting material. Current and luminance can be seen that express a similar relativity in voltage and could know that luminance is expressing current relativity.

A Study on the Enhancement of Emission Efficiency of an Organic EL Devices Using the RF Plasma (RF 플라즈마를 이용한 유기 EL소자의 발광 효율에 관한 연구)

  • 박상무;김형권;신백균;임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.400-406
    • /
    • 2003
  • Efficient electrodes are devised for organic luminescent device(OLED). ITO electrode is treated with $O_2$ plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. In the case of device inserted the buffer layer by using the plasma polymerization after $O_2$ plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic are made in the emitting layer. Therefore it realized the device capability of two times in the aspect of luminous efficiency than the device which do not be inserted the buffer layer. Experiments are limited to the device that has the structure of TPD/$AIq_3$, however, the aforementioned electrodes can similarly applied to the organic luminous device and the Polymer luminous device.

Luminescent characteristics of OLED doped with DCM2 and rubrene (Rubrene과 DCM2가 첨가된 적색 유기전계발광소자의 발광특성)

  • 박용규;성현호;김인회;조황신;양해석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.939-942
    • /
    • 2001
  • We fabricated Red Organic light-emitting devices(OLED). The Basic Device Structure is ITO/hole transfer layer, TPD(50nm)/red emitting layer, Alq3 doped with DCM2 or DCM2:rubrene(xnm)/electorn transfer layer, Alq3(50-xnm)/LiF(0.8nm)/Al(8nm) . The thickness of emitting layer(xnm) changed 5, 10, 20nm. we demonstrate red emitting OLED with dependent on the thickness and concentrators of Alq3 layer doped with DCM2 or co-doped with DCM2:ruberene. The Emission color and Brightness are changed with doping or co-doping condition, dopant concentarton. In the case of rubrene:DCM2 co-doped layer structure, the red color Purity and device efficiency is improved. The CIE index of rubrene co-doped OLED is x=0.67, y=0.31. By co-doping the Alq3 layer with DCM2, rubrene, EL efficiency improved from 0.38cd/A to 0.44cd/A in comparison whit DCM2 doped Alq3 layer.

  • PDF

Electroluminescent Properties of BECCP/Alq3 Organic Light-emitting Diode (BECCP/Alq3 이중층을 이용한 전기 발광 소자의 특성 연구)

  • Lee, Ho-Sik;Yang, Ki-Sung;Shin, Hoon-Kyu;Park, Jong-Wook;Kim, Tae-Wan;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1050-1053
    • /
    • 2004
  • Many organic materials have been synthesized and extended efforts have been made to obtain high performance electroluminescence(EL) devices, since the first report of the light-emitting diodes based on Alq3. BECCP[bis(3-N-ethylcarbazolyl)cyanoterephthalidene] is a new luminescent material having cyano as an electron acceptor part and carbazole moiety as an electron donor part. The BECCP material shows blue PL and EL spectra of the device at about 480nm and in the ITO/BECCP/Al device shows typical rectifying diode characteristics. We have introduced Alq3 between the electrode and BECCP, and obtained more intensive rectifying diode characteristics in forward and reverse bias.

  • PDF

Review of OLED-based Wearable Display for Smart Textiles (스마트 텍스타일 구현을 위한 OLED 기반 웨어러블 디스플레이 리뷰)

  • Jeong, Eun Gyo;Lee, Chang-Min;Cho, Seok Ho
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.860-868
    • /
    • 2021
  • Clothing has a very important role in human life, and it is the most human-friendly platform because humans wear it in almost all the time. In the recent years, smart clothing integrated with various functions is solidifying its position as the core of next-generation Information and Communications Technology(ICT). With this global trend, the smart textiles, textiles embedded with electronic devices that are capable of performing various functions, have been attracting a lot of attention. Therefore, various research activities on the smart textiles are in progress, and the global market outlook for the smart textiles is also showing rapid growth. Among the various smart textile technologies, the textile/fiber-based wearable display has been attracting more attention because it is an essential element for wearers to intuitively control the functions integrated in the smart textiles. This paper provides insightful information and the technological elements of organic light emitting diodes(OLEDs) display, which have been evaluated as the most ideal device for luminescent clothing. Since, OLEDs have many advantages such as light weight, extremely thin thickness and great flexibility, the textile/fiber-based wearable OLEDs can be worn without any inconvenience. In addition, by introducing previous studies on the textile/fiber-based OLED displays, we intend to consider the commercial potential of the textile/fiber-based smart luminescent clothing using the OLED technologies.

Luminance Properties of Organic Light Emitting Diodes Using Zn-Complexes (Zn-Complexes를 이용한 OLEDs의 발광 특성 연구)

  • Jang, Yoon-Ki;Kim, Doo-Seok;Kim, Byoung-Sang;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1890-1892
    • /
    • 2005
  • Recently, high luminance and high efficiency were realized in OLEDs with multilayer structure including emitting materials such as metal-chelate complexes. New luminescent materials, [2- (2-hydroxyphenyl)-quinoline] (Zn(HPB)q), [(1,10-phenanthroline)- (8-hydroxyquinoline)] Zn(Phen)q was synthesized. Zn-Complexes have low molecular compound and thermal stability. The ionization potential(IP) and electron affinity(EA) of Zn-complexes were measured by cyclic-voltammetry(CV). The fundamental structure of the OLEDs was $ITO/{\alpha}$-NPD/Zn-Complex/Al and then we made device structure rightly in energy band gap. We using Zn(Phen)q as emitting layer and Zn(HPB)q as electron transport layer. We measured current density-voltage, luminance-voltage characteristics.

  • PDF