• Title/Summary/Keyword: OH PLIF

Search Result 57, Processing Time 0.039 seconds

Simultaneous Measurements of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames (CH-OH PLIF와 Stereoscopic PIV동시계측에 의한 난류예혼합화염의 관찰)

  • Choi, Gyung-Min;Tanahashi, Mamoru;Miyauchi, Toshio
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.91-96
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry (PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Reynolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Reynolds number turbulent premixed flame. The Reynolds number dependence of the flame front was clearly captured by the simultaneous CH-OH PLIF and stereoscopic PIV measurements.

  • PDF

Simultaneous Measurement of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames (CH-OH PLIF와 Stereoscopic PIV계측법을 이용한 난류예혼합화염의 관찰)

  • Choi Gyung-Min;Tanahashi Mamoru;Miyauchi Toshio.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.102-103
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry(PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Renolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Renolds number turbulent premixed flame.

  • PDF

An Experimental Study on the Flame Structure of Partially Premixed Flame using OH PLIF (OH PLIF를 이용한 부분 예혼합 화염의 화염구조에 관한 실험적 연구)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.54-59
    • /
    • 2001
  • OH radical concentration have been measured in a methane-air partially premixed flames using PLIF. Excitation lines were selected $Q_{1}(6)$ branch, (1,0) band. The system is consisted of Nd:YAG laser, dye laser and frequency doubler to make pump beam for OH radical. On the direct photographs, flame height increases as fuel flow rate and equivalence ratio increase. And on the PLIF images, OH radical is distributed from premixed flame front to nonpremixed flame front through the flame structure with all equivalence ratio. OH overall concentrations increase with equivalence ratio. At the stoichiometric equivalence ratio, the peak of OH radical concentration exists strongly near the inner cone. As equivalence ratio is changed to richer, OH radical distribution goes thinly and the peak is increased as longitudinal direction. As the flow goes to the downstream, OH radical concentration decreases and broadens, because OH radical reacts with another species after OH formation at the initial oxidization. This phenomenon resembles radial distribution. At the l00cc fuel flowrate, the radial peak of OH radical exists from x/R=l.0 to 1.5.

  • PDF

Simultaneous PIV/OH PLIF Measurements in Hydrogen Nonpremixed Flames with Coaxial Air (PIV/OH PLIF 동시 측정을 이용한 동축공기 수소확산화염의 실험적 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.115-123
    • /
    • 2003
  • Simultaneous measurements of velocity and OH distribution were made using particle image velocimetry(PIV) and planar laser-induced fluorescence(PLIF) of OH radical in turbulent hydrogen nonpremixed flames with coaxial air. The OH radical was used as an approximate indicator of chemical reaction zone. The OH layer was correlated well with the stoichiometric velocity, $U_s$, instantaneously and on average. In addition, high strain-rate regions almost coincide with the OH distribution. The residence time in flame surface, calculated from the root-mean-square value of the radial velocity, is proportional to $(x/d_F)^{0.7}$. It is found that the mean value of principal strain rate on the OH layer can be scaled with $(x/d_F)^{-0.7}$ and therefore, the product of the residence time and the mean strain rate remains constant over all axial positions.

  • PDF

LIF/PLIF Measurements of OH Concentration in Flames (LIF/PLIF를 이용한 화염에서의 OH농도 측정)

  • 이원남
    • Journal of the KSME
    • /
    • v.33 no.12
    • /
    • pp.1031-1042
    • /
    • 1993
  • 연소현상에 대한 이해를 증가시키기 위하여 화염을 이용한 많은 실험적 연구가 이루어져 왔다. 특히 연소 모델의 개선과 증명을 위하여는 화염에서의 성분 농도 측정이 필수적이며, 최근에 들어 측정 가능해진 래디컬성분의 측정은 연소해석분야에 많은 진전을 가져왔다. OH, H 및 O는 연료의 분해 (decomposition) 및 연소 산화물생성 이외에도 CO와 NO 같은 공해물질의 형성등 연소과정에서 매우 중요한 래디컬들이며, 특히 화염영역에서의 OH의 전파(transport)는 화염의 점화 및 안정성 (stability)에도 큰 영향을 미친다. OH래디컬은 연소과정에서 가장 중요한 성분 중 하나이며, 또한 스펙트럼이 비교적 잘 알려져 있어 레이저 유도 형광의 적용이 용이하므로 화염에서의 OH농도 측정에 LIF(laser induced fluorescence) 또는 PLIF(planar laser induced fluorescence)가 널리 사용되고 있다. 따라서 LIF 및 PLIF의 원리 및 연소분야에서의 응용을 OH농도 측정을 중심으로 소개하고자 한다.

  • PDF

Structure of Turbulent Premixed Opposed Impinging Jet Flame with Simultaneous PIV/OH PLIF Measurements (PIV/OH PLIF 동시측정을 이용한 난류 대향 분출 예혼합화염 구조 연구)

  • Cho, Yong-Jin;Kim, Ji-Ho;Cho, Tae-Young;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.36-45
    • /
    • 2003
  • The subject of turbulent premixed flames has been focused by many researchers for a number of decades. Especially, Borghi suggested a magnificent diagram classifying turbulent combustion areas and Lipatnikov and Chomiak modified this diagram. Recently, experimental techniques have been developed so that we can use PIV for measuring 2D velocity field and apply OH PLIF techniques for obtaining flame locations. In present study, a new diagram is proposed using strain rates and OH signal intensity. Thus, simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities.

  • PDF

Prediction of Spatial Heat Release Rate of Combustion Chamber by Radicals-PLIF (라디칼 PLIF계측을 이용한 연소실의 공간적 열발생율 예측)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.9-16
    • /
    • 2003
  • The Purpose of this study is to investigate the relationships between the local heat release rate and CH concentration have been investigated by numerical simulations of methane-air premixed flames. And simultaneous CH and OH PLIF(Planar Laser Induced Fluorescence) measurement has been also conducted for lean premixed flame as well as for laminar flames. Numerical simulations are conducted for laminar premixed flames and turbulent ones by using PREMIX in CHEMKIN and two dimensional DNS code with GRI mechanism version 2.11, respectively. In the case of laminar premixed flame, the distance between the peak of heat release rate and that of CH concentration is under $91{\mu}m$ for all equivalence ratio calculated in present work. Even for the premixed flame in high intensity turbulence, the distribution of the heat release rate coincides with that of CH mole fraction. For CH PLIF measurements in the laminar premixed flame burner, CH fluorescence intensity as a function of equivalence ratio shows a similar trend with CH mole fraction computed by GRI mechanism. Simultaneous CH and OH PLIF measurement gave us useful information of instantaneous reaction zone. In addition, CH fluorescence can be measured even for lean conditions where CH mole fraction significantly decreases compared with that of stoichiometric condition. It was found that CH PLIF measurements can be applicable to the estimation of the spatial fluctuations of heat release rate in the engine combustion.

  • PDF

Preheated Air Combustion Characteristics of Partially Premixed Flame (부분 예혼합 화염의 예열공기 연소특성)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

Research on Turbulent Premixed Flame with Simultaneous PIV/OH PLIF measurements (PIV/OH PLIF 동시측정을 이용한 난류 예혼합 화염 연구)

  • Cho Yong-jin;Kim Ji-ho;Cho Tae-young;Yoon Young-bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.97-99
    • /
    • 2002
  • Turbulent premixed flames were a subject of many researches for a number of decades. Especially, Borghi suggested a manificent diagram classifying turbulent combustion reasions and Lipatnikov and Chomiak modified this diagram. But this diagram has difficulties tn defining a flame thickness and velocity and measuring integral length scales In addition, recently experimental techniques are being developed, so we can accurately use PIV diagnostics measuring 2D velocity field instead of LDV and make good use of PLIF techniques for obtaining the flame information. In this study, according to developing techniques, suggest a new diagram replacing the existing Borghi diagram. Simultaneous PIV/OH PLIF measurements are used, which measure a shear strain rate and a location of flames, respectively. The shear strain rate represents turbulence and the OH signal indicates the flame information, but there is no geometric Information which is very important to flame quenching. Hence, to consider the geometric information, calculate fractal dimensions of the OH images. So the diagram suggested in this research has three axes which consist of strain rate, OH signal, and fractal dimension and can classify turbulent premixed flames.

  • PDF