• Title/Summary/Keyword: OFDMA femtocell

Search Result 11, Processing Time 0.016 seconds

Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.508-522
    • /
    • 2011
  • Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions.

Downlink Power Allocation of the OFDMA Femtocell for Inter-cell Interference Mitigation (OFDMA 초소형 기지국의 인접셀 간섭을 최소화하기 위한 하향링크 전력 할당 기법)

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.743-751
    • /
    • 2010
  • OFDMA femtocell becomes an effective solution to support indoor high data rate services instead of the macrocell systems. Although the advantage of the femtocell, the co-channel interference between the femocell and the macrocell is the most significant problem that reduces the system performance. Macrocell users who have no permission to access the femtocell suffer from interference of the downlink transmission of femtocell. Therefore, the femtocell should use transmission power as small as possible to reduce interference to macrocell users. In this paper, we define the margin adaptive power allocation problem for the femtocell and propose a heuristic power allocation algorithm to solve the problem. Simulation results show the performance of the proposed algorithm.

Dynamic Downlink Resource Management of Femtocells Using Power Control in OFDMA Networks (OFDMA 펨토셀 환경에서 전력 제어를 이용한 동적 하향링크 자원관리 방법)

  • Lee, Sang-Tae;Ahn, Chun-Soo;Shin, Ji-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.339-347
    • /
    • 2012
  • Femtocells as home base station for indoor coverage extension and wideband data service, have been studied with significant interests. When femtocell is deployed, the existing cell structural of changes causes various technical problems. In this paper, we investigate the femto-macro cell interference mitigation in OFDMA system. We propose dynamic downlink resource management scheme which adjust the transmitted power of femtocell according to the strength of received macrocell signal and allocates subcarrier to femtocells in a dynamic manner. In this way, the interference between the macrocell users and femtocells is reduced. The simulation results show that proposed scheme enhances both macrocell and femtocell throughputs.

Cooperative Transmission Scheme for OFDMA Based Enterprise Femtocell Networks (OFDMA 기반의 기업형 펨토셀 네트워크를 위한 협력 통신 기법)

  • Kim, Seung-Yeon;Lee, Sang-Joon;Ryu, Seung-Wan;Cho, Choong-Ho;Lee, Hyong-Yoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.338-347
    • /
    • 2012
  • In this paper, we propose the cooperative transmission scheme (CTS) for system throughput maximization in OFDMA based enterprise femtocell networks. In our scheme, the user equipment (UE) can receive the desired signal from serving femtocell BS (fBS) as well as an adjacent fBS. Thus, UE achieves an improved signal to interference plus and noise ratio (SINR) by the synchronized two signals. The performances of this strategy consider not only the call-level quality of service (QoS) but also the packet-level QoS. We first measure the call blocking probability and utilization for the downlink resources for various offered load in femtocell. Based on that, the outage probability and effective throughput of the system are simulated. Simulation results show that the proposed scheme can reduce the outage probability for enterprise femtocell compared with conventional systems.

A Subchannel Allocation Algorithm for Femtocells in OFDMA Cellular Systems (OFDMA 셀룰러 시스템에서 펨토셀 Subchannel 할당 기법)

  • Kwon, Jeong-Ahn;Kim, Byung-Gook;Lee, Jang-Won;Lim, Jae-Won;Kim, Byoung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.350-359
    • /
    • 2010
  • In this paper, we provide a subchannel allocation algorithm for a femtocell system with OFDMA. This algorithm aims to maximize the minimum number of allocated subchannels among all femtocells and in addition, to maximize the total usage of subchannels in all femtocells. The subchannel allocation algorithm consists of three steps: constructing an interference graph, coloring algorithm, and mapping subchannels to colors. In the first step, the femtocell system is modelled by an interference graph, in which each femtocell is modeled as a node and two nodes that interfere with each other are connected by an edge. Based on this interference graph, by using a coloring scheme and mapping subchannels to each color, we can allocate subchannels to each femtocell. Finally, the performance of this algorithm is provided by simulation.

Multi-Cluster based Dynamic Channel Assignment for Dense Femtocell Networks

  • Kim, Se-Jin;Cho, IlKwon;Lee, ByungBog;Bae, Sang-Hyun;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1535-1554
    • /
    • 2016
  • This paper proposes a novel channel assignment scheme called multi-cluster based dynamic channel assignment (MC-DCA) to improve system performance for the downlink of dense femtocell networks (DFNs) based on orthogonal frequency division multiple access (OFDMA) and frequency division duplexing (FDD). In order to dynamically assign channels for femtocell access points (FAPs), the MC-DCA scheme uses a heuristic method that consists of two steps: one is a multiple cluster assignment step to group FAPs using graph coloring algorithm with some extensions, while the other is a dynamic subchannel assignment step to allocate subchannels for maximizing the system capacity. Through simulations, we first find optimum parameters of the multiple FAP clustering to maximize the system capacity and then evaluate system performance in terms of the mean FAP capacity, unsatisfied femtocell user equipment (FUE) probability, and mean FAP power consumption for data transmission based on a given FUE traffic load. As a result, the MC-DCA scheme outperforms other schemes in two different DFN environments for commercial and office buildings.

Optimal Resource Allocation Scheme according to Access Mode in LTE Femtocell Systems (LTE 기반의 펨토셀 시스템에서 접근 모드에 따른 최적의 자원 할당 방식)

  • Lee, In-Sun;Park, Min-Ho;Kim, Dong-Ki;Hwang, Jae-Ho;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.26-34
    • /
    • 2011
  • In Femtocell that provides high quality of indoor communications with low transmitted power, there are two typical Access modes; Closed Access mode and Open Access mode. In this paper, we propose resource allocation scheme, which mitigates difference of performance between Access modes and improves overall cell performance, according to Access mode. We give more wireless resources to Open Access mode Femtocell, which improves performance of other users, than Closed Access mode Femtocell. If Open Access mode Femtocell uses more resource, there is trade-off between improvement of user using Open Access mode Femtocell and increase of interference that other users receive. So, we solve the optimal value for resource allocation and analyze performance of conventional scheme and proposed scheme applying the optimal value. Eventually, proposed scheme can improve overall cell performance relative to conventional scheme.

Dynamic Channel Assignment Scheme Using Graph Coloring in Femtocell Networks (펨토셀 네트워크에서 그래프 컬러링을 이용한 동적채널할당 방법)

  • Kim, Se-Jin;Cho, IlKwon;Kim, Yi-Kang;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.257-265
    • /
    • 2013
  • In this paper, we proposed a Dynamic Channel Assignment (DCA) scheme called Graph Coloring based DCA (GC-DCA) to improve system performance for downlink femtocell networks with high density femto Access Point (AP) deployments. The proposed scheme consists of two steps: one is a femto AP grouping step considering interference and the other is a DCA step considering Signal to Interference plus Noise Ratio (SINR) for femto User Equipments (UEs). Simulation results show that the proposed GC-DCA outperforms other schemes in terms of the mean femto UE capacity and probability of femto UEs which have capacities less than a given transmit rate.

Improved Resource Allocation Scheme in LTE Femtocell Systems based on Fractional Frequency Reuse

  • Lee, Insun;Hwang, Jaeho;Jang, Sungjeen;Kim, Jaemoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2153-2169
    • /
    • 2012
  • Femtocells provide high quality indoor communications with low transmit power. However, when femtocells are applied in cellular systems, a co-channel interference problem between macrocells and femtocells occurs because femtocells use the same spectrum as do the macrocells. To solve the co-channel interference problem, a previous study suggested a resource allocation scheme in LTE cellular systems using FFR. However, this conventional resource allocation scheme still has interference problems between macrocells and femtocells near the boundary of the sub-areas. In this paper, we define an optimization problem for resource allocation to femtocells and propose a femtocell resource allocation scheme to solve the optimization problem and the interference problems of the conventional scheme. The evaluation of the proposed scheme is conducted by System Level Simulation while varying the simulation environments. The simulation results show that the proposed scheme is superior to the conventional scheme and that it improves the overall performance of cellular systems.

Femtocell Searching Technique Using Synchronization Signals for Next-Generation Mobile Communication Systems (차세대 이동통신 시스템에서 동기신호를 이용한 펨토셀 탐색 기법)

  • Kim, Yeong Jun;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.44-57
    • /
    • 2013
  • In this paper, we propose a femtocell searching technique which can prevent a macrocell UE(user equipment) from losing synchronism to its serving macrocell near closed access femtocells in co-channel deployment due to the leakage of femtocell signals by using a CS(Common Signal). The CS, commonly transmitted by femtocells in a macrocell at the same time, enables the macrocell UEs to be kept synchronized with their serving macrocells since the CINR(Carrier to Interference and Noise Ratio) of base stations in macrocell can be kept high even near closed access femtocells. Also, the CS is designed in such a way that a macrocell UE can recognize the existence of femtocell by using the metric CSCINR(Common Signal Carrier to Interference and Ratio) measured with CS. In addition, the proposed femtocell searching technique can reduce the frequency of femtocell searching trial by using the metric on mobility of a macrocell UE defined in this paper, and the reduction of the frequency of handover trial can be also expected as a byproduct.