• Title/Summary/Keyword: OFDM System

Search Result 1,115, Processing Time 0.032 seconds

Performance Analysis of OFDM-DSRC System Using LMMSE Equalization Technique (LMMSE 등화기법을 적용한 OFDM-DSRC 시스템의 성능분석)

  • Sung Tae-Kyung;Kim Soon-Young;Rhee Myung-Soo;Cho Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.23-28
    • /
    • 2005
  • The signal in wireless multi-path channel is affected by fading and ISI because of high data rate transmission, so the signal has the high error rate. The present modulation and demodulation method of DSRC system can not expect sufficient for providing data service over 1 Mbps, so the channel equalization and advanced modulation and demodulation methods are required. OFDM is generally known as an effective technique for high data rate transmission system, since it can prevent ISI by inserting a guard interval. However, a guard interval longer than channel delay spread has to be used in each OFDM symbol period, thus resulting a considerable loss in the efficiency of channel utilization Therefore the equalizer is necessary to cancel ISI to accommodate advanced ITS service with higher bit rate and longer channel delay spread condition In this paper, the channel equalizer for the OFDM -DSRC system was designed and its performance in a multi-path fading environment was evaluated with computer simulation.

Study on Low Density Parity Check Coded OFDM on Fading channel (페이딩 채널에서 LDPC 부호화 OFDM에 대한 연구)

  • Kang, Hee-Hoon;Lee, Young-Jong;Han, Won-Ok
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.51-56
    • /
    • 2005
  • To improve the BER of OFDM on a fading channel, a low-density parity check coded OFDM system is proposed in this paper. LDPC codes are decoded with Sum-Product or Belief Propagation Algorithm known by probability propagation algorithm. When LDPC codes are applied to OFDM system, the BER performance is dependant on the iteration number of decoding. To improve the spectral efficiency, multi-level modulations are used in mobile communication system. But, It is not clear how to decode LDPC code used in OFDM with multi-level modulations. In the paper, a decoding algorithm is described for LDPC coded OFDM with MPSK. When use the proposed decoding algorithm, we get the good BER for AWGN and a Fading Channel. Simulation results show that the proposed decoding algorithm is confirmed LDPC coded OFDM with MPSK.

Performance Improvement of OFDM Systems in Broadband Wireless Communication Channel Environments (광대역 무선통신 채널 환경에서 OFDM 시스템의 성능개선)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • In this paper, we analyzed the performance of OFDM systems with adaptive equalizer that considers the frequency offset, the frequency non-selective fading, and two-path microwave Rummer's model channels. First of all, it is analyzed that the performance degradation, which is caused by the offset and the non-selective fading channel, through simulation. As the results of the simulation, the performance of the OFDM system is greatly influenced by the offset and channels. The more the frequency offset is, the worse the performance of the OFDM system is. However, if the adaptive equalizer is adopted to the OFDM system, the performance is enhanced up to the limited rang.

  • PDF

ACPR Analysis of Millimeterwave OFDM System with Power Amplifier's Phase Distortion (전력증폭기 위상왜곡에 의한 밀리미터파 OFDM 시스템의 ACPR 해석)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.151-155
    • /
    • 2004
  • Millimeterwave OFDM wireless LAN system has been modeled for ACPR analysis. With simple AM-to-PM modeling for power amplifier and system simulation technique, power amplifier ACPR is simulated for OFDM modulation, Also, amplifier back-off value satisfying the required ACPR and the ACPR degradation have been predicted with the measured and modeled AM-tn-PM distortion.

On Compensating Nonlinear Distortions of an OFDM System Using an Efficient Adaptive Predistorter (효과적인 적응 전처리왜곡기를 이용한 OFDM 시스템에서의 비선형 왜곡 보상)

  • 강현우;조용수;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.696-705
    • /
    • 1997
  • This paper presents an efficient adaptive predistortion technique compensating linear and nonlinear distortions caused by high-power amplifier (HPA) with memory in OFDM systems. The efficient adaptive data predistortion techniques proposed for compensation of HPA with memory in single carrier systems cannot be applied to OFDM systems since the possible input levels for HPA is infinite in OFDM systems. Also, previous adaptive predistortion techniques, based on Volterra series modeling, are not suitable for real-time implementation due to high computational burden and slow convergence rate. In the proposed approach, the memoryless HPA preceded by a linear filter in OFDM systems is modeled by the Wiener system which is then precompensated by the proposed adaptive predistorter with a minimum number of filter taps. An adaptive algorithm for adjusting the proposed adaptive predistorter is derived using the stochastic gradient method. It is demonstrated by computer simulation that the performance of OFDM system suffering from nonlinear distortion can be greatly improved by the proposed efficient adaptive predistorter using a small number of filter taps.

  • PDF

A Generalized Multicarrier Communication System - Part II: The T-OFDM System

  • Imran Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.21-29
    • /
    • 2024
  • Precoding of the orthogonal frequency division multiplexing (OFDM) with Walsh Hadamard transform (WHT) is known in the literature. Instead of performing WHT precoding and inverse discrete Fourier transform separately, a product of two matrix can yield a new matrix that can be applied with lower complexity. This resultant transform, T-transform, results in T-OFDM. This paper extends the limited existing work on T-OFDM significantly by presenting detailed account of its computational complexity, a lower complexity receiver design, an expression for PAPR and its cumulative distribution function (cdf), sensitivity of T-OFDM to timing synchronization errors, and novel analytical expressions signal to noise ratio (SNR) for multiple equalization techniques. Simulation results are presented to show significant improvements in PAPR performance, as well improvement in bit error rate (BER) in Rayleigh fading channel. This paper is Part II of a three-paper series on alternative transforms and many of the concepts and result refer to and stem from results in generalized multicarrier communication (GMC) system presented in Part I of this series.

Performance Comparison of UWB DS-CDMA/OFDM/MC-CDMA System in S-V Channel Environment (S-V채널 환경에서 UWB DS-CDMA/OFDM/MC-CDMA 시스템 성능 비교)

  • Lee Hyung-Ki;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.53-60
    • /
    • 2005
  • In this paper, we analyze the performance of UWB MC-CDMA system and compareit with DS-CDMA and OFDM systems, which have been drafting in standardization even now. Too many Rake Fingers are needed in the DS-CDMA system to separate multi-path signals, which results in highsystem complexity. OFDM radio power fails to qualify for FCC certification unless frequency hopping. From this reason, MC-CDMA system considered is proposed in this paper. It has lower complexity compared with DS-CDMA and shows good performance against frequency selective fading. In addition, for a wide-band communication, less radio power per spectrum is allowed in the MC-CDMA system than in an OFDM system. Simulation result show that the DS-CDMA system has better performance with single user, but MC-CDMA system shows best performance in case of multi user environment.

Performance Analysis of Adaptive OFDM Systems using Adaptive Equalizer (적응 등화기를 이용한 적응 OFDM 시스템 성능분석)

  • Kang, Heau-Jo
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.355-360
    • /
    • 2011
  • In this paper, the performance of OFDM (Orthogonal Frequency Division Multiplexing) was assessed by using computer simulations performed using Matlab. We analyzed channel estimation algorithm for adaptive modulation techniques and effect of system using designed simulator in Multimedia wireless communication multipath fading channel environment. Also, we analyzed performance of adaptive OFDM systems that apply adaptive equalizer using guided result through BER. In result, in case of adaptive modulation OFDM systems that modulation mode changes according to channel state, we knew that adaptive modulation OFDM systems have gains of about 7dB performance than general system (BER=$10^{-1}$). Thus we know that adaptive OFDM propose systems is required for efficient transmission in the high speed Multimedia wireless communication channel environment.

Design and Performance Evaluation of the DFT-Spread OFDM Communication System for Phase Noise Compensation and PAPR Reduction (위상 잡음 보상과 PAPR 저감을 고려한 DFT-Spread OFDM 통신 시스템 설계와 성능 평가)

  • Li Ying-Shan;Kim Nam-Il;Kim Sang-Woo;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.638-647
    • /
    • 2006
  • Recently, the DFT-Spread OFDM has been studied for the PAPR reduction. However, the DFT-Spread OFDM produces more ICI and SCI problems than OFDM because phase offset mismatch of the DFT spreading code results from the random phase noise in the oscillator. In this paper, at first, phase noise influence on the DFT-Spread OFDM system is theoretically analyzed in terms of the BER performance. Then, the conventional ICI self-cancellation methods are discussed and two kinds of ICI self-cancellation methods are newly proposed. Lastly, a new DFT-Spread OFDM system which selectively adopts the ICI self-cancellation technique is proposed to resolve the interference problem and PAPR reduction simultaneously. Proposednew DFT-Spread OFDM system can minimize performance degradation caused by phase noise, and still maintain the low PAPR property. Among the studied methods, DFT-Spread OFDM with data-conjugate method or newly proposed symmetric data-conjugate method show the significant performance improvements, compared with the DFT-Spread OFDM without ICI self-cancellation schemes. The data-conjugate method is slightly better than symmetric data-conjugate method.

FH DFT-Spreading OFDM System for the Effective Channel Estimation and PAPR Reduction in Jamming Channel (재밍 채널에서 효과적 채널 추정과 PAPR 저감을 위한 주파수 도약 DFT-Spreading OFDM 시스템)

  • Kim, Jang-Su;Ryu, Heung-Gyoon;Lee, Seung-Jun;Ko, Dong-Kuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.796-804
    • /
    • 2010
  • It is important to use the comb type pilot allocation for the continuous channel and efficient processing. And DFT-spreading OFDM is used a lot to solve high PAPR problem of OFDM system. However, PAPR is increased again when comb type pilot is used to estimate channel characteristics. So, in this paper, we employ a new SLM method to DFT-spreading OFDM system to reduce increased high PAPR. And we suggest an effective method to transmit side information without additional bandwidth. Pilot and side information must be preserved from jamming or intentional interferences since those are very important in DFT spread OFDM system using SLM. So, in this paper, we like to analyze and simulate the performance of DFT spread OFDM system based on SLM against jamming signal. To remedy the vulnerable shortcomings of DFT spread OFDM about jamming or intentional interferences, we employ FH(Frequency Hopping) method and analyze system performance under the several jamming conditions such as MTJ(Multi Tone Jamming) and PBJ(Partial Band Jamming).