• 제목/요약/키워드: OFDM(Orthogonal frequency division multiplexing)

Search Result 816, Processing Time 0.035 seconds

Joint Processing of Zero-Forcing Detection and MAP Decoding for a MIMO-OFDM System

  • Sohn, In-Soo;Ahn, Jae-Young
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.384-390
    • /
    • 2004
  • We propose a new bandwidth-efficient technique that achieves high data rates over a wideband wireless channel. This new scheme is targeted for a multiple-input multiple- output orthogonal frequency-division multiplexing (MIMO-OFDM) system that achieves transmit diversity through a space frequency block code and capacity enhancement through the iterative joint processing of zero-forcing detection and maximum a posteriori (MAP) decoding. Furthermore, the proposed scheme is compared to the coded Bell Labs Layered Space-Time OFDM (BLAST-OFDM) scheme.

  • PDF

Low Power Current mode Signal Processing for Maritime data Communication (해상 데이터 통신을 위한 저전력 전류모드 신호처리)

  • Kim, Seong-Kweon;Cho, Seung-Il;Cho, Ju-Phil;Yang, Chung-Mo;Cha, Jae-sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.89-95
    • /
    • 2008
  • In the maritime communication, Orthogonal Frequency Division Multiplexing (OFDM) communication terminal should be operated with low power consumption, because the communication should be accomplished in the circumstance of disaster. Therefore, Low power FFT processor is required to be designed with current mode signal processing technique than digital signal processing. Current- to-Voltage Converter (IVC) is a device that converts the output current signal of FFT processor into the voltage signal. In order to lessen the power consumption of OFDM terminal, IVC should be designed with low power design technique and IVC should have wide linear region for avoiding distortion of signal voltage. To design of one-chip of the FFT LSI and IVC, IVC should have a small chip size. In this paper, we proposed the new IVC with wide linear region. We confirmed that the proposed IVC operates linearly within 0.85V to 1.4V as a function of current-mode FFT output range of -100~100[uA]. Designed IVC will contribute to realization of low-power maritime data communication using OFDM system.

  • PDF

Channel Estimation scheme for IEEE 802.11a system based on MIMO-OFDM systems (IEEE 802.11a 기반의 MIMO-OFDM 시스템을 위한 채널 추정 기법)

  • 안치준;안재민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.640-650
    • /
    • 2004
  • Channel estimation schemes are proposed for Multiple Input-Multiple output Orthogonal Frequency Division Multiplexing(MIMO-OFDM) systems based on the physical layer specification of the IEEE 802.1 la. By combining the space-time block coding(STBC)/ space-frequency block coding(SFBC) techniques with the transform domain interpolation, the proposed algorithms achieve more accurate channel coefficients for the MIMO channels such that improve the BER performance. The performance improvements of the proposed algorithms are evaluated by simulations under the various multipath fading channel environments and various transmission rates.

PAPR Reduction Improvement for WHT-based OFDM System using Data Grouping Technique (왈시-하다마다 변환과 DGT 기술을 이용한 OFDM 시스템의 PAPR 감소 및 BER성능향상을 위한 연구)

  • Kong Hyung-Yun;Khuong Ho Van;Nam Doo-Hee
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.511-518
    • /
    • 2005
  • The conventional OFDM (Orthogonal Frequency Division Multiplexing) modulation can be combined with WHT (Walsh-Hadamard Transform) to reduce PAPR (Peak-to-Average Power Ratio) and improve BER (Bit Error Rate) performance. However, this WHT-based OFDM system still suffers a relatively high PAPR. Therefore, we suggest a new technique, called DGT (Data Grouping Technique) and design an OFDM system employing it and WHT to further decrease PAPR without the BER performance degradation. h salient property of DGT is the independence of the side information which is inherently a principal drawback of the well-known PAPR reduction techniques for OFDM system as well as WHT-based OFDM. The simulation programs have been also performed to verify the validity of the proposed system.

Performance Comparison of Single-Carrier and Multi-Carrier Systems in a Terahertz Wireless Communication Environment

  • Asiedu, Derek Kwaku Pobi;Ahiadormey, Roger Kwao;Shin, Suho;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2019
  • This paper investigates the performance comparison of a Terahertz (THz) communications for a single-carrier and a multi-carrier single antenna point-to-point communication system. The multi-carrier system and single carrier system consider the orthogonal frequency division multiplexing (OFDM) and the minimum mean square error linear equalizer (MMSE-LE), respectively. We compare the frame-error-rate (FER) and throughput performance of both the systems for a THz communication environment with the carrier frequency of 300GHz and the tapped delay line (TDL) channel models described in 3GPP. It is observed from the simulation results that the OFDM systems outperform the MMSE-LE for various configurations.

Performance analysis of MIMO-OFDM systems with adaptive beamformer (다중 사용자 환경에서 적응 빔 형성기를 가진 MIMO-OFDM 시스템의 성능 분석)

  • Kim, Chan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, the new beamforming is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). Through the proposed Pre-FFT beamforming technique for MIMO-OFDM, the multibeams are formed toward each multi-transmitter antenna of the desired user. The proposed beamforming for MIMO-OFDM can reduce cochannel interference and get diversity gain in the multi-user environment. Therefore, the performance of MIMO-OFDM system is very improved. BER performance improvement of the proposed approach is investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

Design and Implementation of OFDM Frequency Offset Synchronization Block Using CORDIC (CORDIC을 이용한 OFDM 주파수 옵셋 동기부 설계 및 구현)

  • Jang, Young-Beom;Han, Jae-Woong;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.118-125
    • /
    • 2008
  • In this paper, an efficient frequency offset synchronization structure for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. Conventional CORDIC(Coordinate Rotation Digital Computer) algorithm for frequency offset synchronization utilizes two CORDIC hardware i.e., one is vector mode for phase estimation, the other is rotation mode for compensation. But proposed structure utilizes one CORDIC hardware and divider. Through simulation, it is shown that hardware implementation complexity is reduced compared with conventional structures. The Verilog-HDL coding and front-end chip implementation results for the proposed structure show 22.1% gate count reduction comparison with those of the conventional structure.

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

A study on the new doppler effect compensation scheme for OFDM system (OFDM system에서 새로운 Doppler effect 보정 기법에 대한 연구)

  • Lee, Sim-Seok;Jeong, Chang-Ho;Gang, Du-Lee;Lee, Byeong-Seop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • ODFM(Orthogonal Frequency Division Multiplexing) technique is suitable for high speed data transfer both in wired/wireless channels, and is actively studied recently. Among them, WiBro based on IEEE 802.16 uses ODFM as its core technology, and is currently trying to expand market through commercialization. Therefore, if it's used for high speed moving object(KTX, airplane..etc) in near future, there is a possibility of ICI(inter-carrier interference) to occur due to DFS(Doppler Frequency Shift), a critical weak point of ODFM System. This study suggests 3 compensation techniques for Doppler effects in ODFM system operating through satellite, and confirms improved performance through constellation and BER curve.

  • PDF

An efficient Channel Estimation Technique for Space-Time Coded OFDM Systems (시.공간 부호화된 OFDM 시스템의 효율적인 채널추정기법)

  • Jeon, Won-Gi;Baek, Gyeong-Hyeon;Jo, Yong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1499-1509
    • /
    • 2000
  • In this paper, we propose an efficient channel estimation technique for space-time coded orthogonal frequency-division multiplexing (OFDM) systems with transmitter and receiver diversity. The proposed technique estimates uniquely all channel frequency responses needed in a decoder of space-time coded OFDM systems using "comb-type" raining symbols. The computational complexity of the proposed technique is reduced dramatically, compared with the previous minimum mean-squared error (MMSE) technique, due to the processing is made all in the frequency-domain. Also, several other techniques for mitigating random noise effect and tracking channel variation are discussed to further improve the performance of the proposed approach. The performances of the proposed approach are demonstrated by computer simulation for mobile wireless channels. channels.

  • PDF