• Title/Summary/Keyword: OF Cable

Search Result 4,713, Processing Time 0.033 seconds

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.

Parametric Study of AC Current Lead for the Termination of HTS Power Cable

  • Kim, D.L;Kim, S.H.;S. Cho;H.S. Yang;Kim, D.H.;H.S. Ryoo;K.C. Seong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.107-110
    • /
    • 2003
  • High Temperature Superconductor (HTS) transmission cable can carry more than 2 to 5 times higher electricity and also obtain substantially lower transmission losses than conventional cables. Liquid nitrogen is to be used to cool the HTS power cable and its cost is much cheaper than the liquid helium used for the cooling of metal superconducting wire. In Korea the HTS power cable development project has been ongoing since July, 2001 with the basic specifications of 22.9kV, 50MVA and told dielectric type as the first 3-year stage. The cryogenic system of the HTS cable is composed of HTS cable cryostat termination and refrigeration system. Termination of HTS cable is a connecting part between copper electrical cable at room temperature and HTS cable at liquid nitrogen temperature. In order to design the termination cryostat, it is required that the conduction heat leak and Joule heating on the current lead be reduced, the cryostat be insulated electrically and good vacuum insulation be maintained during long time operation. Heat loads calculations on the copper current lead have been performed by analytical and numerical method and the feasibility study fer the other candidate materials has also been executed.

Analytical Method to Determine the Dynamic Amplification Factor due to Hanger Cable Rupture of Suspension Bridges (현수교 행어 케이블 파단에 의한 동적확대계수의 해석적 결정법)

  • Na, Hyun Ho;Kim, Yuhee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.301-308
    • /
    • 2014
  • A suspension bridge is a type of bridge in which the beam is suspended by load-bearing cables. There are two classifications: the self-anchored suspension bridge has the main cable anchored to the bridge girders, and the earth-anchored suspension bridge has the main cable anchored to a large anchorage. Although a suspension bridge is structurally safe, it is prone to be damaged by various actions such as hurricanes, tsunamis and terrorist incidents because its cables are exposed. If damage to a cable eventually leads to the cable rupture, the bridge may collapse. To avoid these accidents, studies on the dynamic behavior of cable bridges due to the cable rupture have been carried out. Design codes specify that the calculated DAF (dynamic amplification factor) should not exceed a certain value. However, it has been difficult to determine DAFs effectively from dynamic analysis, and thus no systematic approach has been suggested. The current study provides a guideline to determine DAFs reliably from the dynamic analysis results and summarizes the results by applying the method to an earth-anchored suspension bridge. In the study, DAFs were calculated at the location of four structural parts, girders, pylons, main cable and hangers, with variations in the rupture time.

Design and Construction of Test Field for Low Voltage Under Cable Fault Location Detection (저압 지중케이블 고장 위치 검출 실증 시험장 설계 및 구축)

  • Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6666-6672
    • /
    • 2015
  • Various reflectometry methods to locate power cable fault have been studied. But, most related studies has been verifying by simulation and laboratory test and study in conditions similar with real cable fault filed was not performed due to the absence of cable fault test field. Therefore, this paper design and construct test field for the standardized performance test and the operating education of cable fault location equipments. In the constructed test, open, short, half open and poor contact fault at 100m, 200m location of cable was produced and 1km cable role was installed for maximum distance measurement test. The test field will be used in the development and standardization of cable fault location technology, and te performance evaluation and certificate test of the related equipments.

A Study of Partial Discharge Patterns On the Simulated Interface of Prefabricated Joint for Ultra Power Cable (초고압 XLPE 케이블용 조립형 직선 접속함을 모의한 계면질서의 부분방전 패턴 연구)

  • Baek, J.H.;Kim, J.N.;Shin, D.S.;Lee, C.Y.;Kim, C.S.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1102-1104
    • /
    • 1999
  • It is very essential to find out defects and remove them in the insulation at the early stage because the defects in the insulation induce PD which deteriorates the material, resulting in the breakdown. In the real application of high voltage, the interface of the different insulation is the weakest place for both electrical and mechanical aspects. In this paper, characteristics of PD caused by the artificial defects, such as metallic particles, voids and moist fibers, at the interfaces of the cable joint (PJB) were investigated using the specially designed electrode system.

  • PDF

Development of High Speed Multimedia Transmission System based on HFC Network (HFC 망에서의 고속 멀티미디어 전송시스템 개발)

  • Son, Byoung-Hee;Nahm, Eui-Seok;Yang, Hyo-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • The transfer capability of HFC (Hybrid Fiber Coax) network is superior to xDSL. HFC network, however, is not suitable for transferring high quality video due to cable model interfaces. For the services of high quality IPIV or VOD, the extra exclusive downstream transfer system is required without upgrading pre-equipped cable modem and service capability. This paper is aimed to develop the extra exclusive downstream transfer system not changing existing cable modem system but providing same quality of services. This system is composed of the extra exclusive downstream IP-cable sender and modem. This sender and modem have 30 Mbps transfer capability and HDTV stream can be served in the Cable TV network using 21 Mbps HDTV transport stream.

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.593-594
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a loom length HTS power cable. The authors developed a single line-to ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable

  • PDF

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2225-2226
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a loom length HTS power cable. The authors developed a single line-to-ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable.

  • PDF

Harmonics based loss characteristics analysis of HTS DC power cable (고조파에 의한 초전도 직류 전력케이블의 손실 특성 분석)

  • Kim, S.K.;Kim, S.H.;Park, M.W.;Yu, I.K.;Lee, S.J.;Cho, J.W.;Sim, K.D.;Won, Y.J.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.19-23
    • /
    • 2011
  • An HTS DC power cable is expected to perfectly eliminate transmission loss caused by resistance. However, when the HTS DC power cable is applied to the power system, loss of the HTS DC power cable is generated due to harmonics caused by HVDC converter. We designed and analyzed the HTS DC power cable with a critical current of 1 kA to investigate the loss characteristics using a finite element method package. In this paper, the loss characteristics caused by harmonics in the HTS DC power cable were analyzed according to order and magnitude of harmonics. Based on the analysis results, the critical current of HTS DC power cable considered with the rated current could be determined to minimize the capacity of cooling system for the design the HTS DC power cable.

A Study on the Single Line-to-Ground Fault Analysis of HTS Power Cable (초전도 전력케이블의 1선 지락고장 특성 해석에 관한 연구)

  • Je, Hyang-Ho;Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Jo, Jeon-Wook;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1259-1260
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Commercializing of HTS power cable is coming. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. In this paper, we shows a single line-to ground fault analysis in the grid system which has a 100m length HTS power cable. The authors developed a single line-to-ground fault current calculation method which is considering the shield layer of HTS power cable. In the calculation, the T type equivalent circuit is used to derive the mutual inductance of the HTS power cable.

  • PDF