• Title/Summary/Keyword: OCV

Search Result 143, Processing Time 0.026 seconds

Analysis of the parameter change of high power lithium ion battery according to vibration test based on statistical analysis (통계적 분석에 기반한 진동에 따른 고출력 리튬이온 배터리의 파라미터 변화 분석)

  • Lee, P.Y.;Yoon, C.O.;Kim, J.H.;Jang, S.S.
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.453-454
    • /
    • 2017
  • 본 논문에서는 환경 시험 중 한가지 방법인 진동 시험(Vibration test) 프로파일을 적용하여 고출력 리튬이온18650 셀(cell)에 물리적인 진동을 가하고 진동 시험 전 후 고출력 리튬이온 18650 셀의 전기적 특성 기반 내부 파라미터를 추출하였다. 통계적 기법인 상관 관계 및 대응 표본 t 검정을 적용하여 내부 파라미터인 방전 용량(discharged capacity), 방전 저항(discharged resistance), OCV(open circuit voltage) 간의 관계 및 변화를 비교 분석하였다.

  • PDF

Improved SOC Estimation Algorithm using Shepherd Model and Coulomb Counting Method (Shepherd model과 전류적산법을 이용한 개선된 SOC 추정 알고리즘)

  • Bae, Kyeung-cheol;Choi, Seong-chon;Shin, Min-ho;Kim, Young-real;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.526-527
    • /
    • 2014
  • 본 논문은 Shepherd model과 전류적산법을 이용한 개선된 SOC 추정 알고리즘을 제안하였다. 제안한 추정 알고리즘은 전류적산법을 통해 SOC를 측정 한 후 누적된 오차는 Shepherd model을 통해 구한 OCV를 이용하여 리셋시킴으로써 최종적으로 SOC 추정을 수행하였다. Li-ion 4.2V, 10Ah 배터리를 사용하여 SOC 추정 실험을 하였다. 제안한 SOC 추정 알고리즘은 불규칙적인 전류 프로파일을 통해 이상적인 SOC 추정값과 제안한 SOC 추정값을 비교함으로써 SOC 추정 알고리즘의 우수성을 확인하였다.

  • PDF

Application of SOC estimation method to lead storage battery of industrial electric vehicle (산업용 전기 차량의 납 축전지 SOC 추정 방법 적용 연구)

  • Park, Gi-Hyoung;Kim, Sung-Ki;Ryu, Chong-Geon;Jung, Myung-Kil
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.299-300
    • /
    • 2012
  • 본 논문에서는 납 축전지를 사용하는 산업용 전기차량의 SOC(State Of Charge)를 별도의 BMS(Battery Management System)장치 없이 추정하는 방법에 대해 기술한다. SOC를 추정하기 위한 기존의 전통적인 방법들 중 전력을 적산하는 방법(Ampere hour counting)이 널리 사용되는데 이는 장치의 내, 외적인 요인에 의해 발생한 오차가 누적될 수 있다. 배터리의 전압을 측정하여 SOC를 추정하는 OCV(Open Circuit Voltage) 방법은 배터리가 안정 상태에 도달하기까지 충분한 휴지 시간이 필요해 실시간으로 적용하기 힘들다. 이 외에 칼만 필터를 이용하는 방법은 시스템을 정확히 모델링해야 하고 계산이 복잡하다는 단점이 있다. 본 연구에서는 전력을 적산하는 방법을 기본으로 하고 배터리의 전압을 적절히 이용하여 누적되는 오차를 보정하는 방법을 제안한다. 제안한 방법에 대해 시뮬레이션 하고 실제로 산업용 차량인 AC 전동 지게차로 실험하여 그 타당성을 검증 하였다.

  • PDF

Battery SOC Estimation Using Extended Kalman Filter for HEV System (HEV 시스템을 위한 확장 칼만 필터(EKF)를 이용한 배터리(LiPB)의 충전 상태(SOC) 추정)

  • Kang, Taekyu;Lim, Sangmin;Choi, Jeaho;Windarko, Novie Ayub
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.130-131
    • /
    • 2012
  • 본 논문은 확장 칼만 필터(EKF)를 이용하여 배터리의 SOC(State-of-Charge) 추정 방법을 제안하였다. EKF는 정확한 모델에서만 제대로 동작 할 수 있다. 따라서, 본 논문은 EKF의 적용을 위해 높은 정확도를 가진 전기적 배터리 모델에 대해 설명한다. 배터리 모델은 4.2V, 40Ah의 리튬폴리머 전지에서 추출되었다. 배터리는 Bulk 커패시터, 두 개의 R-C회로, 직렬 저항을 사용하여 모델링하였다. EKF를 모델에 적용하기 위해 캐패시터 전압은 개방 회로 전압(OCV)을 나타내는데 사용된다. EKF는 충/방전 기기인 Maccor 8500에 의해 얻을 실험 데이터로 테스트하였다. 테스트 결과에서 추정의 오차가 최대 5% 정도로 줄일 수 있다는 것을 보여준다.

  • PDF

Adaptive Design Techniques for High-speed Toggle 2.0 NAND Flash Interface Considering Dynamic Internal Voltage Fluctuations (고속 Toggle 2.0 낸드 플래시 인터페이스에서 동적 전압 변동성을 고려한 설계 방법)

  • Yi, Hyun Ju;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.251-258
    • /
    • 2012
  • Recently, NAND Flash memory structure is evolving from SDR (Single Data Rate) to high speed DDR(Double Data Rate) to fulfill the high performance requirement of SSD and SSS. Accordingly, the proper ways of transferring data that latches valid data stably and minimizing data skew between pins by using PHY(Physical layer) circuit techniques have became new issues. Also, rapid growth of speed in NAND flash increases the operating frequency and power consumption of NAND flash controller. Internal voltage variation margin of NAND flash controller will be narrowed through the smaller geometry and lower internal operating voltage below 1.5V. Therefore, the increase of power budge deviation limits the normal operation range of internal circuit. Affection of OCV(On Chip Variation) deteriorates the voltage variation problem and thus causes internal logic errors. In this case, it is too hard to debug, because it is not functional faults. In this paper, we propose new architecture that maintains the valid timing window in cost effective way under sudden power fluctuation cases. Simulation results show that the proposed technique minimizes the data skew by 379% with reduced area by 20% compared to using PHY circuits.

Study on the Degradation of MEA Using Sulfonated Poly(ether ether ketone) Membrane in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지에서 sPEEK 막을 이용한 전극과 막 합체(MEA)의 열화에 관한 연구)

  • Lee, Hye-Ri;Lee, Se-Hoon;Hwang, Byung-Chan;Na, Il-Chai;Lee, Jung-Hun;Oh, Sung-June;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.305-309
    • /
    • 2016
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, to test the durability of sPEEK MEA (Membrane and Electrode Assembly), ADT (Accelerated Degradation Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. Before and after degradation, I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. Although the permeability of hydrogen through sPEEK membrane was low, sPEEK membrane was weaker to radical evolved at low humidity and OCV condition than fluorinated membrane such as Nafion. Performance after MEA degradation for 144 hours and 271 hours were reduced by 15% and 65%, respectively. It was showed that the main cause of rapid decrease of performance after 144 hours was shorting due to Pt/C particles in the pinholes.

Study on the Steady-State and Dynamic Performance of Polymer Electrolyte Fuel Cells with the Changes of External and Self-Humidification Conditions (고분자 전해질 연료전지의 외부가습 및 지체가습 변화에 의한 정상상태 및 비정상상태 성능특성 연구)

  • Lee, Yong-Taek;Kim, Bo-Sung;Kim, Yong-Chan;Choi, Jong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCS) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in the potentiostatic mode and EIS (electrochemical impedance spectroscopy). The I-V curves representing steady-state performance were obtained from OCV to 0.25 V, and the dynamic performance responses were obtained at some voltages. The effects of anodic external humidification were measured by varying relative humidity of hydrogen from 20% to 100% while dry air was supplied in the cathode. At the high voltage region, the performance became higher with the increase of the temperature, while at the low voltage region, the performance decreased with the increase of temperature. The EIS showed that ohmic losses were larger at the dry condition of membrane and the effects of mass transport losses increased remarkably when the external and self-humidification were high. The dynamic responses were also monitored by changing the voltage of the PEFC instantly. As the temperature increased, the current reached steady-state earlier. The self-humidification with the generated water delayed the stabilization of the current except for low voltage conditions.

Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell (Pt/GDC/Pt 셀을 이용한 물과 질소로부터 전기화학적 암모니아 합성)

  • Jeoung, Hana;Kim, Jong Nam;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng;Song, Ki Chang;Sharma, Monika;Yoon, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.58-62
    • /
    • 2014
  • Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range $400{\sim}600^{\circ}C$ and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was $3.67{\times}10^{-11}mols^{-1}cm^{-2}$ with 0.1% faradaic efficiency at $600^{\circ}C$.

Electrochemical Properties of Lithium Anode for Thermal Batteries (열전지용 리튬음극의 전기화학적 특성)

  • Im, Chae-Nam;Yoon, Hyun Ki;Ahn, Tae-Young;Yeo, Jae Seong;Ha, Sang Hyeon;Yu, Hye-Ryeon;Baek, Seungsu;Cho, Jang Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.696-702
    • /
    • 2018
  • Recently, the current thermal battery technology needs new materials for electrodes in the power and energy density to meet various space and defense requirements. In this paper, to replace the pellet type Li(Si) anode having limitations of the formability and capacity, electrochemical properties of the lithium anode with high density for thermal batteries were investigated. The lithium anode (Li 17, 15, 13 wt%) was fabricated by mixing the molten lithium and iron powder used as a binder to hold the molten lithium at $500^{\circ}C$. The single cell with 13 wt% lithium showed a stable performance. The 2.06 V (OCV) of the lithium anode was significantly improved compared to 1.93 V (OCV) of the Li(Si) anode. Specific capacities during the first phase of the lithium anode and Li(Si) were 1,632 and $1,181As{\cdot}g^{-1}$, respectively. As a result of the thermal battery performance test at both room and high temperatures, the voltage and operating time of lithium anode thermal batteries were superior to those of using Li(Si) anode thermal batteries. The power and energy densities of Li anode thermal batteries were also remarkably improved.

Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC (PEMFC에서 Pt-Co/C Cathode 촉매가 고분자막의 전기화학적 내구성에 미치는 영향)

  • Sohyeong Oh;Dong Geun Yoo;Myoung Hwan Kim;Ji Young Park;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.189-195
    • /
    • 2023
  • As a PEMFC (Polymer Exchange Membrane Fuel Cell) cathode catalyst, Pt-Co/C has recently been widely used because of its improved durability. In a fuel cell, electrodes and electrolytes have a close influence on each other in terms of performance and durability. The effect on the electrochemical durability of the electrolyte membrane when Pt-Co/C was replaced in the Pt/C electrode catalyst was studied. The durability of Pt-Co/C MEA (Membrane Electrode Assembly) was higher than that of Pt/C MEA in the electrochemical accelerated degradation process of PEMFC membrane. As a result of analyzing the FER (Fluorine Emission Rate) and hydrogen permeability, it was shown that the degradation rate of the membrane of Pt-Co/C MEA was lower than that of Pt/C MEA. In the OCV (Open Circuit Voltage) holding process, the rate of decrease of the active area of the Pt-Co/C electrode was lower than that of the Pt/C electrode, and the amount of Pt deposited on the membrane was smaller in Pt-Co/C MEA than in Pt/C MEA. Pt inside the polymer membrane deteriorates the membrane by generating radicals, so the degradation rate of the membrane of Pt/C MEA with a high Pt deposition rate was higher than Pt-Co/C MEA. When the Pt-Co/C catalyst was used, the electrode durability was improved, and the amount of Pt deposited on the membrane was also reduced, thereby improving the electrochemical durability of the membrane.