• Title/Summary/Keyword: OCTAVIUS

Search Result 5, Processing Time 0.018 seconds

Feasibility Study of Mobius3D for Patient-Specific Quality Assurance in the Volumetric Modulated Arc Therapy

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Lee, Jeongshim;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.120-127
    • /
    • 2019
  • Purpose: This study was designed to evaluate the dosimetric performance of Mobius3D by comparison with an aSi-based electronic portal imaging device (EPID) and Octavius 4D, which are conventionally used for patient-specific prescription dose verification. Methods: The study was conducted using nine patients who were treated by volumetric modulated arc therapy. To evaluate the feasibility of Mobius3D for prescription dose verification, we compared the QA results of Mobius3D to an aSi-based EPID and the Octavius 4D dose verification methods. The first was the comparison of the Mobius3D verification phantom dose, and the second was to gamma index analysis. Results: The percentage differences between the calculated point dose and measurements from a PTW31010 ion chamber were 1.6%±1.3%, 2.0%±0.8%, and 1.2%±1.2%, using collapsed cone convolution, an analytical anisotropic algorithm, and the AcurosXB algorithm respectively. The average difference was found to be 1.6%±0.3%. Additionally, in the case of using the PTW31014 ion chamber, the corresponding results were 2.0%±1.4%, 2.4%±2.1%, and 1.6%±2.5%, showing an average agreement within 2.0%±0.3%. Considering all the criteria, the Mobius3D result showed that the percentage dose difference from the EPID was within 0.46%±0.34% on average, and the percentage dose difference from Octavius 4D was within 3.14%±2.85% on average. Conclusions: We conclude that Mobius3D can be used interchangeably with phantom-based dosimetry systems, which are commonly used as patient-specific prescription dose verification tools, especially under the conditions of 3%/3 mm and 95% pass rate.

A Comparison of Patient-specific Delivery Quality Assurance (DQA) Devices in Radiation Therapy (방사선치료에서 환자맞춤형 선량품질보증 장치의 비교)

  • Kyung Hwan Chang
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.231-238
    • /
    • 2023
  • This study aimed to compare the results of delivery quality assurance (DQA) using MapCHECK and OCTAVIUS for radiation therapy. Thirty patients who passed the DQA results were retrospectively included in this study. The point dose difference (DD) and gamma passing rate (GPR) were analyzed to evaluate the agreement between the measured and planned data for all cases, Plan complexity was evaluated to analyze dosimetric accuracy by quantifying the degree of modulation according to each plan. We analyzed the monitor units (MUs) and total MUs for each plan to evaluate the correlation between the MUs and plan complexity. We used a paired t-test to compare the DD and GPRs that were obtained using the two devices. The DDs and GPRs were within the tolerance range for all cases. The average GPRs difference between the two devices was statistically significant for the brain, and head and neck for gamma criteria of 3%/3 mm and 2%/2 mm. There was no significant correlation between the modulation index and total MUs for any of the cases. These DQA devices can be used interchangeably for routine patient-specific QA in radiation therapy.

Patient-Specific Quality Assurance in a Multileaf Collimator-Based CyberKnife System Using the Planar Ion Chamber Array

  • Yoon, Jeongmin;Lee, Eungman;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • This paper describes the clinical use of the dose verification of multileaf collimator (MLC)-based CyberKnife plans by combining the Octavius 1000SRS detector and water-equivalent RW3 slab phantom. The slab phantom consists of 14 plates, each with a thickness of 10 mm. One plate was modified to support tracking by inserting 14 custom-made fiducials on surface holes positioned at the outer region of $10{\times}10cm^2$. The fiducial-inserted plate was placed on the 1000SRS detector and three plates were additionally stacked up to build the reference depth. Below the detector, 10 plates were placed to avoid longer delivery times caused by proximity detection program alerts. The cross-calibration factor prior to phantom delivery was obtained by performing with 200 monitor units (MU) on the field size of $95{\times}92.5mm^2$. After irradiation, the measured dose distribution of the coronal plane was compared with the dose distribution calculated by the MultiPlan treatment planning system. The results were assessed by comparing the absolute dose at the center point of 1000SRS and the 3-D Gamma (${\gamma}$) index using 220 patient-specific quality assurance (QA). The discrepancy between measured and calculated doses at the center point of 1000SRS detector ranged from -3.9% to 8.2%. In the dosimetric comparison using 3-D ${\gamma}$-function (3%/3 mm criteria), the mean passing rates with ${\gamma}$-parameter ${\leq}1$ were $97.4%{\pm}2.4%$. The combination of the 1000SRS detector and RW3 slab phantom can be utilized for dosimetry validation of patient-specific QA in the CyberKnife MLC system, which made it possible to measure absolute dose distributions regardless of tracking mode.

Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams

  • Lee, Kyong Sei;Ahn, Sung Hwan;Han, Youngyih;Hong, Byungsik;Kim, Sang Yeol;Park, Sung Keun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.297-304
    • /
    • 2015
  • A multilayer gaseous detector has been developed for fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy. The detector, which was constructed with eight thin parallel-plate ionization chambers (PPICs) and polymethyl methacrylate (PMMA) absorber plates, is closely tissue-equivalent in a beam's eye view. The gas-electron signals, collected on the strips and pad arrays of each PPIC, were amplified and processed with a continuous charge.integration mode. The detector was tested with 190-MeV raster-scan-mode beams that were provided by the Proton Therapy Facility at Samsung Medical Center, Seoul, South Korea. The detector responses of the PPICs for a 190-MeV raster-scan-mode proton beam agreed well with the dose data, measured using a 2D ionization chamber array (Octavius model, PTW). Furthermore, in this study it was confirmed that the detector simultaneously tracked the doses induced at the PPICs by the fast-oscillating beam, with a scanning speed of 2 m s-1. Thus, it is anticipated that the present detector, composed of thin PPICs and operating in charge.integration mode, will allow medical scientists to perform reliable fast dose-verification measurements for typical dynamic mode therapeutic beams.

Global Changing of Consumer Behavior to Retail Distribution due to Pandemic of COVID-19: A Systematic Review

  • TIMOTIUS, Elkana;OCTAVIUS, Gilbert Sterling
    • Journal of Distribution Science
    • /
    • v.19 no.11
    • /
    • pp.69-80
    • /
    • 2021
  • Purpose: Consumers have unique behaviors that are classified based on their interests and considerations before buying. They are predicted will change due to the pandemic of COVID-19. This study provides insights for retailers about the dynamic of consumer behavior before and during the pandemic, including future predictions. Research design, data and methodology: The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement was applied in this study. Seven studies that were selected from five databases meet the criteria for cohort and cross-sectional analyses of gender, age, store types, and environmental concerns. Results: Consumer's gender and age contribute to consumer behavior change. Both offline and online stores can be integrated as omnichannel rather than substitute each other. Product distribution and consumer budget need to be reevaluated by retailers, while internet security is the most essential factor when developing their online transactions. Conclusions: COVID-19 pandemic has a significant impact on changing consumer behavior in most countries. Retailers are encouraged to adapt to the changes by modifying their business model with technology. However, it is still speculated and cannot be generalized due to different cultural and contextual factors. Future studies are always needed to synchronize along with the transition of consumers' behavior.