• 제목/요약/키워드: OBSERVATION

검색결과 15,637건 처리시간 0.039초

과학적 관찰 전략을 적용한 과학수업에서 초등학교 6학년 학생들의 관찰지식 생성에 대한 연구 (A Study on Observation Knowledge Generation Using the Scientific Observation Strategy in 6th Grade Students)

  • 이혜정;이근경;권용주
    • 한국과학교육학회지
    • /
    • 제30권1호
    • /
    • pp.13-26
    • /
    • 2010
  • 이 연구는 초등학교에서 과학적 관찰 전략을 적용한 과학 수업이 관찰지식 생성에 미치는 효과를 알아보는 것이다. 이를 위하여 교육과정 분석을 통해 관찰과 관련된 수업주제를 선정하고, 관찰의 방법과 대상에 따라 체계적인 관찰이 이루어지도록 학습지와 스토리보드를 개발하였다. 이 연구를 위해 초등학교 6학년 학생을 대상으로 실험집단 38명, 통제집단 37명을 선정하였다. 실험집단에는 14차시에 걸쳐 과학적 관찰 전략을 적용한 수업을 실시하였으며, 통제집단에는 실험집단과 동일한 주제와 차시에 걸쳐 전통적 수업을 적용하였다. 실험 집단과 통제 집단 모두 수업처치 전후에 촛불 관찰 과제로 과학적 관찰 전략을 적용한 수업의 효과를 검증하였다. 연구 결과, 과학적 관찰 전략을 적용한 과학 수업이 전통적 수업에 비해 다양한 관찰 지식을 생성하는데 효과적이었다. 생성된 관찰 사실들에 대한 관찰 지식의 수와 다양도 측면에서 학생들의 관찰력을 정량적으로 평가한 결과, 수업 처치 후 실험집단의 관찰지식의 수와 다양도에서 유의미한 차이가 보였다. 또한 절대 관찰력 지수에서도 실험 집단이 통제 집단보다 관찰력 지수가 높아졌음을 알 수 있었다. 이는 과학적 관찰에 대한 체계적인 지도 전략은 학생들의 과학적 관찰 지식 생성력을 향상시키는데 효과적일 수 있음을 시사한다.

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • 대한원격탐사학회지
    • /
    • 제29권3호
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

Comparison of EEG Changes Induced by Action Execution and Action Observation

  • Kim, Ji Young;Ko, Yu-Min;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • 제29권1호
    • /
    • pp.27-32
    • /
    • 2017
  • Purpose: Recent electrophysiological studies have shown that the sensorymotor cortex is activated during both actual action excuted by themselves and observation of action performed by other persons. Observation of action based on mirror neuron system can be used as a cognitive intervention to promote motor learning. The purpose of this study was to investigate the brain activity changes during action observation and action execution using EEG. Methods: Thirty healthy volunteers participated and were requested to perform hand action and to observe the video of hand action performed by another person. The EEG activity was evaluated by a method which segregated the time-locked for each condition. To compare the differences between action observation and execution, the Mu suppression and the relative band power were analysed. Results: The results showed significant mu suppression during the action observation and execution, but the differences between the two conditions were not observed. The relative band power showed a significant difference during the action observation and execution, but there were no differences between the two conditions. Conclusion: These results indicate that action execution and observation involve overlapping neural networks in the sensorymotor cortical areas, proposing positive changes on neurophysiology. We are expected to provide information related to the intervention of cognitive rehabilitation.

Two-Site Optical Observation and Initial Orbit Determination for Geostationary Earth Orbit Satellites

  • Choi, Jin;Choi, Young-Jun;Yim, Hong-Suh;Jo, Jung-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.337-343
    • /
    • 2010
  • Optical observation system provides angle-only measurement for orbit determination of space object. Range measurement can be directly acquired using laser ranging or tone ranging system. Initial orbit determination (IOD) by using angle- only data set shows discrepancy according to the measurement time interval. To solve this problem, range measurement data should be added for IOD. In this study, two-site optical observation was used to derive the range information. We have observed nine geostationary earth orbit satellites by using two-site optical observation system. The determination result of the range shows the accuracy over 99.5% compared to the results from the satellite tool kit simulation. And we confirmed that the orbit determination by the Herrick-Gibbs method with the range information obtained from the two-site observation is more accurate than the orbit determination by Gauss method with the one-site observation. For more accurate two-site optical observation, a baseline should satisfy an optimal condition of length and more precise observation system needed.

CFD 모델을 이용한 도시지역 지상바람 관측환경 평가 (Assessment of Observation Environment for Surface Wind in Urban Areas Using a CFD model)

  • 양호진;김재진
    • 대기
    • /
    • 제25권3호
    • /
    • pp.449-459
    • /
    • 2015
  • Effects of buildings and topography on observation environment of surface wind in central regions of urban areas are investigated using a computational fluid dynamics (CFD) model. In order to reflect the characteristics of buildings and topography in urban areas, geographic information system (GIS) data are used to construct surface boundary input data. For each observation station, 16 cases with different inflow directions are considered to evaluate effects of buildings and topography on wind speed and direction around the observation station. The results show that flow patterns are very complicated due to the buildings and topography. The simulated wind speed and direction at the location of each observation station are compared with those of inflow. As a whole, wind speed at observation stations decreases due to the drag effect of buildings. The decrease rate of wind speed is strongly related with total volume of buildings which are located in the upwind direction. It is concluded that the CFD model is a very useful tool to evaluate location of observation station suitability. And it is expected to help produce wind observation data that represent local scale excluding the effects of buildings and topography in urban areas.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

현장학습을 위한 천체관측 프로그램의 개발과 적용 (Development and Application of Astronomical Observation Program for Field Trip)

  • 김상달;박종철
    • 대한지구과학교육학회지
    • /
    • 제1권1호
    • /
    • pp.52-62
    • /
    • 2008
  • The purpose of this study is to find out learning content for astronomical observation that could perform astronomical programs regardless of weather conditions as a case for the present conditions of astronomical observation and the methods of new education for astronomical observation, and to suggest the methods of synchronized multiple astronomical observation and actual cases using the Internet network. The results are as follows. First, the method of galaxy-oriented astronomical education helped those attempting to approach astronomy academically for the first time grasp useful concepts as to the astronomical space, and let them look at the space in an objective sense, which was effective in forming cosmic structure and concepts. Second, the administration curriculum of astronomical observation team was related to data that systematically contained annual astronomical education concerning the operation of astronomical observation teams; thus, they could be suggested as beneficial teaching materials to the teachers who wanted to organize a school club meeting. Third, it has been noted that the level of students' satisfaction in p2d program and MSO program was very high, and they turned out to be effective learning methods that could be implemented even in times of rain when it would not be possible to conduct astronomical observation activities.

  • PDF

A study on possibility of land vegetation observation with Mid-resolution sensor

  • Honda, Y.;Moriyama, M.;Ono, A.;Kajiwara, K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.349-352
    • /
    • 2007
  • The Fourth Assessment Report of IPCC predicted that global warming is already happening and it should be caused from the increase of greenhouse gases by the extension of human activities. These global changes will give a serious influence for human society. Global environment can be monitored by the earth observation using satellite. For the observation of global climate change and resolving the global warming process, satellite should be useful equipment and its detecting data contribute to social benefits effectively. JAXA (former NASDA) has made a new plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, provides an optical sensor from Near-DV to TIR. Characteristic specifications of SGLI are as follows; 1) 250 m resolutions over land and area along the shore, 2) Three directional polarization observation (red and NIR), and 3) 500 m resolutions temperature over land and area along shore. These characteristics are useful in many fields of social benefits. For example, multi-angular observation and 250 m high frequency observation give new knowledge in monitoring of land vegetation. It is expected that land products with land aerosol information by polarization observation are improved remarkably. We are studying these possibilities by ground data and satellite data.

  • PDF

A Method of Tracking Object using Particle Filter and Adaptive Observation Model

  • Kim, Hyoyeon;Kim, Kisang;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2017
  • In this paper, we propose an efficient method that is tracking an object in real time using particle filter and adaptive observation model. When tracking object, it happens object shape variation by camera or object movement in variety environments. The traditional method has an error of tracking from these variation, because it has fixed observation model about the selected object by the user in the initial frame. In order to overcome these problems, we propose a method that updates the observation model by calculating the similarity between the used observation model and the eight-way of edge model from the current position. If the similarity is higher than the threshold value, tracking the object using updated observation model to reset observation model. On the contrary to this, the algorithm which consists of a process is to maintain the used observation model. Finally, this paper demonstrates the performance of the stable tracking through comparison with the traditional method by using a number of experimental data.

한국형수치예보모델 자료동화에서 위성 복사자료 관측오차 진단 및 영향 평가 (Diagnostics of Observation Error of Satellite Radiance Data in Korean Integrated Model (KIM) Data Assimilation System)

  • 김혜영;강전호;권인혁
    • 대기
    • /
    • 제32권4호
    • /
    • pp.263-276
    • /
    • 2022
  • The observation error of satellite radiation data that assimilated into the Korean Integrated Model (KIM) was diagnosed by applying the Hollingsworth and Lönnberg and Desrozier techniques commonly used. The magnitude and correlation of the observation error, and the degree of contribution for the satellite radiance data were calculated. The observation errors of the similar device, such as Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit-A shows different characteristics. The model resolution accounts for only 1% of the observation error, and seasonal variation is not significant factor, either. The observation error used in the KIM is amplified by 3-8 times compared to the diagnosed value or standard deviation of first-guess departures. The new inflation value was calculated based on the correlation between channels and the ratio of background error and observation error. As a result of performing the model sensitivity evaluation by applying the newly inflated observation error of ATMS, the error of temperature and water vapor analysis field were decreased. And temperature and water vapor forecast field have been significantly improved, so the accuracy of precipitation prediction has also been increased by 1.7% on average in Asia especially.