• Title/Summary/Keyword: O-linked glycosylation

Search Result 14, Processing Time 1.562 seconds

Specific Biological Activity of Equine Chorionic Gonadotropin (eCG) Glycosylation Sites in Cells Expressing Equine Luteinizing Hormone/CG (eLH/CG) Receptor

  • Byambaragchaa, Munkhzaya;Cho, Seung-Hee;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.199-211
    • /
    • 2021
  • Equine chorionic gonadotropin (eCG), produced by the endometrial cups of the placenta after the first trimester, is a specific glycoprotein that displays dual luteinizing hormone (LH)-like and follicle-stimulating hormone (FSH)-like effects in non-equid species. However, in equidaes, eCG exhibits only LH-like activity. To identify the specific biological functions of glycosylated sites in eCG, we constructed the following site mutants of N- and O-linked glycosylation: eCGβ/αΔ56, substitution of α-subunit56 N-linked glycosylation site; eCGβ-D/α, deletion of the O-linked glycosylation sites at the β-subunit, and eCGβ-D/αΔ56, double mutant. We produced recombinant eCG (rec-eCG) proteins in Chinese hamster ovary suspension (CHO-S) cells. We examined the biological activity of rec-eCG proteins in CHO-K1 cells expressing the eLH/CG receptor and found that signal transduction activities of deglycosylated mutants remarkably decreased. The EC50 levels of eCGβ/αΔ56, eCGβ-D/α, and eCGβ-D/αΔ56 mutants decreased by 2.1-, 5.6-, and 3.4-fold, respectively, compared to that of wild-type eCG. The Rmax values of the mutants were 56%-80% those of wild-type eCG (141.9 nmol/104 cells). Our results indicate that the biological activity of eCG is greatly affected by the removal of N- and O-linked glycosylation sites in cells expressing eLH/CGR. These results provide important information on rec-eCG in the regulation of specific glycosylation sites and improve our understanding of the specific biological activity of rec-eCG glycosylation sites in equidaes.

Mass Spectrometry in the Determination of Glycosylation Site and N-Glycan Structures of Human Placental Alkaline Phosphatase

  • Solakyildirim, Kemal;Li, Lingyun;Linhardt, Robert J.
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2018
  • Alkaline phosphatase (AP) is a membrane-bound glycoprotein that is widely distributed in the plasma membrane of cells of various organs and also found in many organisms from bacteria to humans. The complete amino acid sequence and three-dimensional structure of human placental alkaline phosphatase have been reported. Based on the literature data, AP consists of two presumptive glycosylation sites, at Asn-144 and Asn-271. However, it only contains a single occupied N-linked glycosylation site and no occupied O-linked glycosylation sites. Hydrophilic interaction chromatography (HILIC) has been primarily employed for the characterization of the glycan structures derived from glycoproteins. N-glycan structures from human placental alkaline phosphatase (PLAP) were investigated using HILIC-Orbitrap MS, and subsequent data processing and glycan assignment software. 16 structures including 10 sialylated N-glycans were identified from PLAP.

Lectin histochemistry of lung tissues in the Streptozotocin rat fetus (Streptozotocin을 투여한 흰쥐 태자 폐조직의 렉틴 조직화학 염색성)

  • Hong, Hea-Nam;Kim, Dong-Hou
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.84-96
    • /
    • 1993
  • This study was to investigate the effects of maternal diabetes on the lung tissue of the fetal rat using lectin histochemistry and electron microscope technique. Maternal diabetes was induced by intraperitoneal injection of streptozotocin (75 mg/kg the body weight) into pregnant Sprague-Dawley rats on the 7th day of gestation. Fetuses of streptozotocin induced diabetic rats exhibited delayed lung maturation and reduced air space. In lectin histochemistry, the binding of Maclura pomifera (MPA) to fetal lungs from diabetic mothers was reduced, but no significant changes in the bindings of Concanavalin A (Con A), Wheat germ agglutinin (WGA), Ricinus communis I (RCA I) and Griffonia simplicifolia (GSI-$B_4$) were noted. Because the MPA has affinity to terminal N-acetyl-D-galactosamine residues constantly linked O-glycosidically to serine or threonine, the present findings may indicates that maternal diabetes interfere with the processes of O-linked glycosylation in fetal rat lung.

  • PDF

Differential Expression of O-glycoprotein Glycans in Cholangiocarcinoma Cell Lines

  • Talabnin, Krajang;Talabnin, Chutima;Ishihara, Mayumi;Azadi, Parastoo;Wongkham, Sopit;Sripa, Banchob
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.691-695
    • /
    • 2016
  • Protein glycosylation is the most common posttranslational modification in mammalian cells. Aberrant protein glycosylation has been reported in various diseases, including cancer. We identified and quantified the glycan structures of O-linked glycoprotein from cholangiocarcinoma (CCA) cell lines from different histological types and compared their profiles by nanospray ionization-linear ion trap mass spectrometry (NSI-$MS^n$). Five human CCA cell lines, K100, M055, M139, M213 and M214 were characterized. The results showed that the O-linked glycans of the CCA cell lines comprised tri- to hexa-saccharides with terminal galactose and sialic acids: NeuAc1Gal1GalNAc1, Gal2GlcNAc1GalNAc1, NeuAc2Gal1GalNAc1 NeuAc1Gal2GlcNAc1GalNAc1 and NeuAc2Gal2GlcNAc1GalNAc1 All five CCA cell lines showed a similar glycan pattern, but with differences in their quantities. NeuAc1Gal1GalNAc1 proved to be the most abundant structure in poorly differentiated adenocarcinoma (K100; 57.1%), moderately differentiated adenocarcinoma (M055; 42.6%) and squamous cell carcinoma (M139; 43.0%), while moderately to poorly differentiated adenocarcinoma (M214; 40.1%) and adenosquamous cell carcinoma (M213; 34.7%) appeared dominated by $NeuA_{c2}Gal_1GalNA_{c1}$. These results demonstrate differential expression of the O-linked glycans in the different histological types of CCA. All five CCA cell lines have abundant terminal sialic acid (NeuAc) O-linked glycans, suggesting an important role for sialic acid in cancer cells. Our structural analyses of glycans may provide important information regarding physiology of disease-related glycoproteins in CCA.

Production of O-GlcNAc Modified Recombinant Proteins in Escherichia coli

  • LIM, KI HONG;CHANG HOON HA;HYO IHL CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.306-311
    • /
    • 2002
  • O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslationally modified compound in eukaryotic cells. Human O-GlcNAc transferase (OGT) was produced as a maltose binding protein (MBP) fusion protein, which showed significant catalytic activity to modify recombinant Sp1, transcription factor. To facilitate the production of O-GlcNAc modified proteins, instead of using the tedious in vitro glycosylation reaction or expression in eukaryotic cells, a MBP-fusion OGT expression vector (pACYC184-MBPOGT) was constructed using pACYC184 plasmid, which could coexist with general prokaryotic expression vectors containing ColE1 origin. By cotransforming pACYC184-MBPOGT and pGEX-2T vectors into Escherichia coli BL21, intracellular O- GlcNAcylated proteins could be obtained by a simple purification procedure. It is expected that this may be a useful tool for production of O-GlcNAc modified proteins.

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch;Loukil, Sana;Marzouki, Mohamed Nejib
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.653-658
    • /
    • 2011
  • Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.

Naegleria fowleri Induces Jurkat T Cell Death via O-deGlcNAcylation

  • Lee, Young Ah;Kim, Kyeong Ah;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.5
    • /
    • pp.501-505
    • /
    • 2021
  • The pathogenic free-living amoeba Naegleria fowleri causes primary amoebic meningoencephalitis, a fatal infection, by penetrating the nasal mucosa and migrating to the brain via the olfactory nerves. N. fowleri can induce host cell death via lytic necrosis. Similar to phosphorylation, O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is involved in various cell-signaling processes, including apoptosis and proliferation, with O-GlcNAc addition and removal regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), respectively. However, the detailed mechanism of host cell death induced by N. fowleri is unknown. In this study, we investigated whether N. fowleri can induce the modulation of O-GlcNAcylated proteins during cell death in Jurkat T cells. Co-incubation with live N. fowleri trophozoites increased DNA fragmentation. In addition, incubation with N. fowleri induced a dramatic reduction in O-GlcNAcylated protein levels in 30 min. Moreover, pretreatment of Jurkat T cells with the OGA inhibitor PUGNAc prevented N. fowleri-induced O-deGlcNAcylation and DNA fragmentation. These results suggest that O-deGlcNAcylation is an important signaling process that occurs during Jurkat T cell death induced by N. fowleri.

Biological Roles of the Glycan in the Investigation of the Novel Disease Diagnosis and Treatment Methods (신개념 질병 진단 및 치료 연구에 있어서의 당사슬의 생물학적 역할)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1379-1385
    • /
    • 2018
  • Glycans are attached to proteins as in glycoproteins and proteoglycans. They are found on the exterior surface of cells. O- and N-linked glycans are very common in eukaryotic cells but may also be found in prokaryotes. The interaction of cell surface glycans with complementary glycan binding proteins located on neighboring cells, other cell types, pathogens like virus, or bacteria is crucial in biologically and biomedically important processes like pathogen recognition, cell migration, cell-cell adhesion, development, and infection. Their implication in pathological condition, suggests an important role for glycans as disease markers. In addition, a great amount of research has been shown that appropriate glycosylation of a recombinant therapeutic protein is critical for product solubility, stability, pharmacokinetics and pharmacodynamics, bioactivity, and safety. Besides, cancer-associated glycosylation changes often involve sialic acid in glycan branch which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the glycan's biological function and describing the relevance among the glycosylation, disease diagnosis and treatment methods. Furthermore, the high-throughput analytic methods available to measure the profile changing patterns of glycan in the blood serum as well as possible underlying biochemical mechanisms.

Effect of Deglycosylation on the Aminopeptidase Isolated from Aspergillus flavus

  • Cho, Mi-Sook;Chung, Hye-Shin
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.317-319
    • /
    • 1999
  • A leucine aminopeptidase has been isolated from the culture medium of the soil fungus, Aspergillus flavus. The enzyme was found to be a glycoprotein, as judged by electrophoresis analysis and the subsequent staining by the periodic acid-Schiff's reagent. Carbohydrate moieties could be cleaved by N-glycosidase, but not by O-glycosidase, indicating that the glucans are linked to the asparagine residue in the protein. Removal of N-glucans was observed without prior denaturation of the protein, implying that the N-glycosidic linkage is exposed and accessible to glycosidase. When the activity of native or deglycosylated enzyme was measured in the presence of various metal ions, removal of carbohydrates increased the aminopeptidase activity of the enzyme.

  • PDF