Browse > Article

Production of O-GlcNAc Modified Recombinant Proteins in Escherichia coli  

LIM, KI HONG (Graduate School of Biotechnology, Korea University)
CHANG HOON HA (Graduate School of Biotechnology, Korea University)
HYO IHL CHANG (Graduate School of Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.12, no.2, 2002 , pp. 306-311 More about this Journal
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslationally modified compound in eukaryotic cells. Human O-GlcNAc transferase (OGT) was produced as a maltose binding protein (MBP) fusion protein, which showed significant catalytic activity to modify recombinant Sp1, transcription factor. To facilitate the production of O-GlcNAc modified proteins, instead of using the tedious in vitro glycosylation reaction or expression in eukaryotic cells, a MBP-fusion OGT expression vector (pACYC184-MBPOGT) was constructed using pACYC184 plasmid, which could coexist with general prokaryotic expression vectors containing ColE1 origin. By cotransforming pACYC184-MBPOGT and pGEX-2T vectors into Escherichia coli BL21, intracellular O- GlcNAcylated proteins could be obtained by a simple purification procedure. It is expected that this may be a useful tool for production of O-GlcNAc modified proteins.
Keywords
O-linked N-acetylglucosamine; O-GlcNAc transferase; cotransformation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Hanover, J. A. 2001. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 15: 1865-1876
2 Huang, L., N. F. Mivechi, and D. Moskophidis. 2001. Insights into regulation and function of the major stressinduced hsp70 molecular chaperone in vivo: Analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene. Mol. Cell. Biol. 21: 8575-8591
3 Kelly, W. G., M. E. Dahmus, and G. W. Hart. 1993. RNA polymerase II is a glycoprotein. Modification of the COOHterminal domain by O-GlcNAc. J. Biol. Chem. 268: 10416- 10424
4 Sayeski, P. P. and J. E. Kudlow. 1996. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription. J. Biol. Chem. 271: 15237-15243
5 Chang, H.-A., J.-K. Chang, J.-W. Kim, and M.-N. Kim. 2000. Expression of heat shock protein 70 in umbilical vein endothelial cells infected by Staphylococcus aureus. J. Microbiol. Biotechnol. 10: 137-142
6 Comer, F. I. and G. W. Hart. 2001. Reciprocity between OGlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40: 7845-7852
7 Roos, M. D., K. Su, J. R. Baker, and J. E. Kudlow. 1997. OGlycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions. Mol. Cell. Biol. 17: 6472-6480
8 Han, I., E.-S. Oh, and J. E. Kudlow. 2000. Responsiveness of the state of O-linked N-acetylglucosamine modification of nuclear pore protein p62 to the extracellular glucose concentration. Biochem. J. 350: 109-114
9 Chou, T. Y., G. W. Hart, and C. V. Dang. 1995. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J. Biol. Chem. 270: 18961-18965
10 Akimoto, Y., L. K. Kreppel, H. Hirano, and G. W. Hart. 2001. Hyperglycemia and the O-GlcNAc transferase in rat aortic smooth muscle cells: Elevated expression and altered patterns of O-GlcNAcylation. Arch. Biochem. Biophys. 389: 166-175
11 Lubas, W. A. and J. A. Hanover. 2000. Functional expression of O-linked GlcNAc transferase. J. Biol. Chem. 275: 10983- 10988
12 Gravel, P. and O. Golaz. 1996. In Walker, J. M. (ed.), The Protein Protocols Handbook, pp. 603-617. Humana Press, New Jersey, U.S.A
13 Akimoto, Y., L. K. Kreppel, H. Hirano, and G. W. Hart. 2000. Increased O-GlcNAc transferase in pancreas of rats with streptozotocin-induced diabetes. Diabetologia 43: 1239-1247
14 Kearse, K. P. and G. W. Hart. 1991. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc. Natl. Acad. Sci. USA 88: 1701-1705
15 Su, K., M. D. Roos, X. Yang, I. Han, A. J. Paterson, and J. E. Kudlow. 1999. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J. Biol. Chem. 274: 15194-15202
16 Kreppel, L. K., M. A. Blomberg, and G. W. Hart. 1997. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272: 9308-9315
17 Bollag, D. M., M. D. Rozycki, and S. J. Edelstein. 1996. Protein Methods, 2nd ed., pp. 333-337. John Wiley and Sons, New York, U.S.A
18 Lefebvre, T., C. Cieniewski, J. Lemoine, Y. Guerardel, Y. Leroy, Z.-P. Zanetta, and J.-C. Michalski. 2001. Identification of N-acetyl-D-glucosamine-specific lectins from rat liver cytosolic and nuclear compartments as heat-shock proteins. Biochem. J. 360: 179-188
19 Guan, K. L. and J. E. Dixon. 1991. Eukaryotic proteins expressed in Escherichia coli: An improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192: 262-267
20 Reason, A. J., H. R. Morris, M. Panico, R. Marais, R. H. Treisman, R. S. Haltiwanger, G. W. Hart, W. G. Kelly, and A. Dell. 1992. Localization of O-GlcNAc modification on the serum response transcription factor. J. Biol. Chem. 267: 16911-16921
21 Lubas, W. A., D. W. Frank, M. Krause, and J. A. Hanover. 1997. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272: 9316-9324
22 Okuno, Y., N. Imamoto, and Y. Yoneda. 1993. The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol. Cell. Biol. 12: 2186-2192
23 Ruther, A., N. Misawa, P. Boger, and G. Sandmann. 1997. Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl. Microbiol. Biotechnol. 48: 162-167
24 Haltiwanger, R. S., S. Busby, K. Grove, S. Li, D. Mason, L. Medina, D. Moloney, G. Philipsberg, and R. Scartozzi. 1997. O-Glycosylation of nuclear and cytoplasmic proteins: Regulation analogous to phosphorylation? Biochem. Biophys. Res. Commun. 231: 237-242
25 Cheng, X., R. N. Cole, J. Zaia, and G. W. Hart. 2000. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 39: 11609-11620
26 Yao, P. J. and P. D. Coleman. 1998. Reduction of OLinked N-acetylglucosamine-modified assembly protein-3 in Alzheimer’s disease. J. Neurosci. 18: 2399-2411
27 Yang, X., K. Su, M. D. Roos, Q. Chang, A. J. Paterson, and J. E. Kudlow. 2001. O-Linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc. Natl. Acad. Sci. USA 98: 6611-6616
28 Akimoto, Y., L. K. Kreppel, H. Hirano, and G. W. Hart. 1999. Localization of the O-linked N-acetylglucosamine transferase in rat pancreas. Diabetes 48: 2407-2413
29 Konrad, R. J., I. Mikolaenko, J. F. Tolar, K. Liu, and J. E. Kudlow. 2001. The potential mechanism of the diabetogenic action of streptozotocin: Inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-b-D-glucosaminidase. Biochem. J. 356: 31-41
30 Griffith, L. S., M. Mathes, and B. Schmitz. 1995. $\beta$ Amyloid precursor protein is modified with O-linked Nacetylglucosamine. J. Neurosci. Res. 41: 270-278.