• Title/Summary/Keyword: O/W 화장품 제형

Search Result 26, Processing Time 0.022 seconds

Development and Characterization of O/W Cosmetic Formulations Containing Nipa palm (Nypa fruticans Wurmb) and Finger root (Boesenbergia pandurate) Extracts (니파팜, 핑거루트 추출물을 함유한 O/W 화장품 제형 개발 및 분석)

  • Jun, Yue Jin;Kim, Jin-Hee;Jin, Byung Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.922-930
    • /
    • 2021
  • This study was attempted to investigate the availability of nipa palm (Nypa fruticans Wurmb.) and finger root (Boesenbergia pandurata) extracts as natural cosmetic ingredients. For this, O/W cosmetic formulations with different compositions were prepared. The appearance of the cosmetic formulations was compared, and brightness and color values were measured using a colorimeter. Also, the pH, viscosity, and texture of the cosmetic formulations with different compositions were measured, and the effects of the extracts on the properties of the cosmetic formulations were examined. Finally, the UV transmittance and sun protection factor (SPF) index were observed, and the results confirmed the availability of finger root extract as a natural ingredient for UV protection.

The Functions of Polyoxyethylene Tocopherylethers in the Formulations of Cosmetics (화장품 제형에서 폴리옥시에틸렌 토코페릴에테르의 기능)

  • 김영대;김창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.19 no.1
    • /
    • pp.108-126
    • /
    • 1993
  • The functions of polyoxyethylene tocopheryl ethers [POE(n)TEs] in emulsion, solubilization and gel were studied. For emulsification of liquid paraffin, POE(10)TE showed better emulsifying effect in O/W emulsions than others tested. The effects of oil and polyol content on the formulation of W/O and O/W emulsions were also studied. In O/W emulsion, the viscosity was increased by increasing the liquid paraffin content, at about 70%, and slightly increased by increasing the propylene glycol content, However, in W/O emulsion, the viscosity was decreased by increasing the oil content, and also decreased by increasing the propylene glycol content, For solubilization of perfume oil, POE(18)TE showed better solubilizing effect than the others tested. The gelling effect of POE(n)TEs increased with ethylene oxide chain length up to 50 moles. The gelling property was evaluated for hardness and viscosity.

  • PDF

Changes in Rheological Properties of O/W Emulsions according to the Type of Nonionic Surfactant and Emulsion Stabilizer (비이온 계면활성제, 유화안정제 종류에 따른 O/W 유화 제형의 유변학적 특성 변화)

  • Choi, Joong Seok;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.415-420
    • /
    • 2019
  • To investigate the effect of nonionic surfactant and emulsion stabilizer on O/W emulsions, various emulsion formulations with different types of nonionic surfactants and emulsion stabilizers were prepared and their rheological properties were compared. In this study, polysorbate 60 (Tween 60), PEG-60 hydrogenated castor oil (HCO 60), octyldodeceth-16 (OD 16), and ceteareth-6 olivate (Olivem 800) were used as hydrophilic nonionic surfactants, whereas cetyl alcohol, glyceryl monostearate, and stearic acid as emulsion stabilizers. Phase separation occurred only in the emulsion formulation with octyldodeceth-16 and all other emulsion formulations maintained a stable phase. The viscosity, hardness, and creaminess of emulsion formulation using a mixture of ceteareth-6 olivate and cetyl alcohol were the highest, and the emulsified droplet size was also the largest. These results are due to the formation of a network structure texture with the development of a large amount of liquid crystal in the O/W emulsion. In this formulation, the value of elastic modulus was large and the thixotropic behavior, in which the viscosity varies with the history of external force, was observed.

A Study on the Emulsifying Stability of W/O Type Sunscreen Cream by the Hansen Solubility Parameter (Hansen Solubility Parameter 를 통한 W/O 형 자외선차단 제형의 유화 안정성에 관한 연구)

  • Kim, Dong Hee;Lee, Jin Jae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.273-280
    • /
    • 2021
  • The water resistance is important factor for sunscreen formulations. Generally a sunscreen cream was formulated by a water-in-oil (W/O) emulsion. In the W/O emulsion system, silicone oils are added to improve the texture of formulations. Silicone oils have low compatibility with organic sunscreen agent, causing problems with the stability in emulsion. In this study, the compatibility between various oils in the W/O emulsion was derived numerically using Hansen solubility parameter (HSP) at first. HSP is represented a dispersion degree, a polarity, and a hydrgen bond in a composition. In this study, various emulsions were prepared according to the types of oils with different HSP values and then monitored by a viscosity and morphology according to the time and temperature. The HSP values of components and the experimental results have similar activities for the stability of emulsions. HSP made it easy to select oil with high compatibility. When the compatibility of the oil phase in the W/O emulsion was high, the viscosity change over time was small. The stability was improved under the freeze-thaw cycle (-15 ℃ ~ 45 ℃). In the future, if the composition of the ingredients is optimized through HSP, it is expected that it will be helpful in the development of W/O type sunscreen formulations that are excellent in use and stability.

A Study of Effect on Skin Temperature by Jadeite Powder Containing O/W Emulsion Formulation (원적외선 방사체인 경옥 파우더를 함유하는 스킨케어 화장품 제형이 피부 온도 변화에 미치는 영향에 대한 연구)

  • Kim, Na Ri;Shim, Jongwon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.201-210
    • /
    • 2018
  • In this study, we formulated oil-in-water emulsion composition for skin care products containing jadeite powder which is well known as far-infrared radiating material. Jadeite powder could sustain stable dispersion in aqueous solvents over a month and this helped mixing it high content in oil-in-water emulsion formulation. To identify the effect of jadeite as a far-infrared radiator materials relating to the skin surface temperature change, we applied emulsion formulation containing 2 weight percent jadeite powder onto facial skin surface and blank formulation together and analyzed surface temperature with thermo-vision. Our results showed that the temperature difference between jadeite powder formulation applied region and blank formulation reached to 1.5 ~ 2.0 degree Celsius. We also performed same test with nephrite powder and titanium dioxide powder but only jadeite powder containing formulation showed significant skin temperature change. To elucidate main cause of heat energy transfer, we tested heat radiation, energy dispersive spectrometer analysis and measured far infrared radiance emissivity, diffuse reflectance spectra and water evaporation rate. We found out jadeite powder could retard water evaporation effectively from the skin surface and resist temperature drop down. This is because of the innate chemical composition and surface structure of jadeite, which can bind with water molecules to form hydrogen bonds. It is concluded that we can develop novel skin care products for moisturizing and thermos with jadeite powder.

Development of Water-Resistant O/W Emulsion-Typed Sunscreening Cosmetics through Triblock Polymeric Surfactant-Mediated Re-emulsification Inhibition (삼중블록 고분자 계면활성제의 재유화 억제 기능을 이용한 지속내수성 O/W 에멀젼형 자외선 차단용 화장품 개발)

  • Lee, Ji Hyun;Hong, Sung Yun;Lee, Jin Yong;An, So Youn;Lee, Hyo Jin;Kim, Sung Yong;Lee, Jun Bae;Kim, Jin Woong;Shin, Kyounghee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.199-208
    • /
    • 2019
  • This study reports water-resistant oil-in-water (O/W) emulsion-based sunscreening formulations prepared using a poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock polymeric surfactant. As a result of a variety of outdoor recreational activities such as swimming and hiking, consumer needs for development of advanced water-resistant sunscreen formulations are increasing. Water-resistant sunscreens are mostly based on water-in-oil (W/O) emulsions, because they should not be wiped off by water or sweat. However, the W/O emulsion formulations have a disadvantage in that the feeling of use is oily and difficult to remove. On the other hand, the O/W emulsion formulations are excellent in achieving the better skin feel as well as the easier removal. However, it is difficult to provide the O/W emulsion formulations with the water-repelling performance, since re-emulsification likely occurs upon getting touch with water. To solve this problem, this study proposes a O/W emulsion-based sunscreen formulation, a triblock polymeric surfactant having relatively high interfacial tension HLB value (~ 10). This allows the sunscreen formulations to exhibit the improved water repellence function by preventing their re-emulsification. The sunscreen formation system prepared in this study would be useful for diversification of functional sunscreen products, taking advantages of its excellent emulsion stability, UV protection performance, long lasting water-resistant function and selective cleansing effect with only foam cleanser.

Stability of W/O Nanoemulsions with Low Viscosity Prepared by PIC Method (PIC 방법으로 제조된 저점도 W/O 나노에멀젼의 안정성)

  • Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.127-133
    • /
    • 2016
  • In this study, water-in-oil (W/O) nanoemulsions of water/Span 80-Nikkol BL 25/oil system were prepared by the PIC method at elevated temperature. This method allows the formation of finely dispersed W/O nanoemulsions with low viscosity in this system. However, macroemulsions rather than nanoemulsions were prepared by PIC method at room temperature. As a result of the significant change of interfacial tension with temperature, the emulsion droplet size decreases from $2{\mu}m$ to 100 nm with the increase in temperature from $30^{\circ}C$ to $80^{\circ}C$. The droplet size of nanoemulsions prepared at $80^{\circ}C$ was in the range of 50 ~ 200 nm and the internal phase content could reach as high as 15 wt%. The most stable nanoemulsion was formed in the vicinity of 7.0 of optimum HLB of the emulsifier mixture. The obtained nanoemulsions were stable without obvious change in droplet size in one month. This study provides valuable information for optimizing the formation of W/O nanoemulsions with low viscosity. These results suggest that W/O nanoemulsions of low viscosity could be useful for cosmetics with soft feeling.

Synergistic Interaction in W/O and W/S Emulsions Stabilized by a Mixture of Powders and Surfactant (분체와 유화제의 상호 관계성에 기인한 저점도 W/O 및 W/S 에멀젼의 안정성 연구)

  • In, So Hyun;Cho, Hwanil;Kang, Nae Gyu;Han, Jong Sup;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Water-in-oil emulsions including water-in-ester oil and water-in-silicone oil (W/O+S) have various advantages such as blocking moisture evaporation and forming air permeable membrane. However, their applications have been limited due to the poor stability under low viscosity condition. In this study, we investigated the effect of synergistic interaction between nonionic surfactant, micro-size particles and cationic surfactant on the stability of W/O+S formulation. The stability of W/O+S emulsions was changed as a function of cationic surfactant concentration where it increased at lower concentration and then started to decrease above a critical point. Finally, emulsion phase inversion occurred at a high concentration. The results suggest that W/O+S emulsions of low viscosity ranging from 2000 to 5000 cps can be stabilized under the conditions where a nonionic surfactant, micro-size particles and a cationic surfactant are used in the range of 1.0 ~ 4.0 wt%, 2.5 wt% and 0.1 ~ 0.5 wt%, respectively.

Stability of Nano-emulsions Containing Fatty Acid and Fatty Alcohol (지방산 및 지방알코올을 함유한 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In this study, low viscous O/W (oil-in-water) nano-emulsion with fatty acid and fatty alcohol was prepared by phase inversion emulsification method using Tween 80 and Span 80 widely used in cosmetic products. The particle size of the nano-emulsion was increased as increasing the concentration of fatty alcohol in oil phase. Adjusting the HLB of mixed surfactants, a stable nano-emulsion with a narrow size distribution was produced. Similar change in viscosity and electrical conductivity in both systems containing fatty acid and fatty alcohol was shown in the vicinity of the phase inversion point. However, high viscosity was shown in a wide range of different aqueous fraction unlike the system consisting only oils and surfactants. The low viscous nano-emulsion with less than 100 nm droplet size was stable for one month or more at room temperature. O/W nano-emulsions with low viscosity containing fatty acid or fatty alcohol produced by low-energy emulsification method can be widely used as formulations of cosmetics.

Characterizations of Water-dispersed Biocellulose Nanofibers on the Skin Surface (피부 표면에서의 수분산 바이오셀룰로오스 미세섬유의 특성에 대한 연구)

  • Jun, Seung-Hyun;Kim, Seo Yeon;Park, Sun Gyoo;Lee, Cheon Koo;Lee, Seol-Hoon;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • In this study, water-dispersed biocellulose nanofibers (TC) were prepared via an oxidation reaction using 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO) as a catalyst. The TC retained their unique structure in water as well as in emulsion. TC adhered to the skin surface while maintaining nanofibrous structures, providing inherent functions of biocellulose, such as high tensile strength and high water-holding capacity. When gelatin gels as model skin were coated with TC, the hardness representing the elasticity was increased by 20% compared to untreated gelatin gel because TC could tightly hold the gelatin structure. When porcine skin was treated with TC and TC-contained O/W emulsion, the initial water contact angles of TC were lower than other materials, and dramatically decreased over time as water penetrated the fibrous structure of the TC film. Characterization of TC on the skin surface offered insight into the function of nanofibers on the skin, which is important for their applications with respect to fiber-cosmetics.