• Title/Summary/Keyword: Nyquist Stability

Search Result 38, Processing Time 0.024 seconds

A Study on Relative Stability for Poppet Valve with Drain Orifice (드레인 오리피스를 갖는 포펫 밸브의 상대 안정도에 관한 연구)

  • Yun, S.N.;Jeong, H.H.;Seo, J.K.;Ham, Y.B.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.12-17
    • /
    • 2010
  • The poppet valve had used every field area due to high quality of leakage property and response characteristic. But this valve still has terrible disadvantage that is self-exited vibration. This problem affects stability of total system and raises noise. The researcher tries to reduce that self-exited vibration when valve was designed. The stability discriminant is the typical study to improve the performance of the poppet valve. This paper concerns about stability discriminant that uses poppet valve with a drain orifice. At the first, the mathematical model is computed from poppet valve. After that, the limitation of stability is calculated that based on Nyquist criterion. At the final, the stability discriminant is selected in each condition and the graph that shows stability in the system is drown by dimensionless quantity.

  • PDF

Generalized Nyquist Criterion for the Stability of Xenon Oscillation (일반화된 Nyquist 요건에 의한 제논진동의 안전성 분석)

  • Park, You-Cho;Park, Goon-Cherl;Chung, Chang-Hyun;Park, Chong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.371-379
    • /
    • 1990
  • The Xenon spatial oscillation may give rise to operational difficulties in a nuclear power plant. In this study, in order to investigate the Xenon instability for a PWR, the frequency-domain technique is adopted by using Generalized Nyquist Criterion, which is more general and suitable for the multi-input/multi-output system. Also linearized modal fluxes are obtained by a modal expansion. This model has been implemented to test the axial Xenon stability of YGN-1 unit against the changes in plant operating parameters ; power level, control rod position, and core average burnup. The results show that the increase of power level and the deeper insertion of control rod have the destabilizing effect, and that the burnup progress makes the core less stable. Also the results show that the overestimation due to modal interaction was found not to be significant.

  • PDF

Continuous-Time Controller Design using Identification of Feedback System in Frequency Domain (주파수역 피드백시스템인식을 이용한 연속시간 제어기 설계)

  • Yang, Ho-Suk;Jung, Yu-Chul;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.664-669
    • /
    • 2001
  • Continuous-time controller design is proposed using feedback system identification in frequency domain. System stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Nyquist stability. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation and DC disturbance.

  • PDF

Characteristics of One Step Advanced Discrete Time D-Control with Time Delay in Noncolocated Flexible System (비병치 유연계의 시간지연 이산제어에서 한스텝선행 미분제어기의 특성)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1678-1685
    • /
    • 1993
  • This paper considers a time delay control of noncolocated flexible mechanical systems in discrete time domain. A stability criterion suggested in the previous paper is,extended in the consideration of infinite mode property of flexible systems and finite control sampling frequency. Based on the stability criterion, the one step advanced discrete time derivative control is suggested, which can stabilize infinite number of modes of a flexible system. The sensitivity analysis shows the robustness of the one step advanced control to the system parameter uncertainties and time delay errors. Application to a simply supported beam verifies the extended stability criterion and the effectiveness of the one step advanced D-control.

Combustion Stability Analysis using Feedback Transfer Function (피드백 전달함수를 이용한 연소 안정성 해석)

  • Kim, Jina;Yoon, Myunggon;Kim, Daesik
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper we propose a new approach for an analysis and a prediction of combustion instability of lean premixed gas turbines. Our approach is based on the Nyquist stability criterion in control theory and a transfer function representation of a one-dimensional (1D) thermoacoustic system. A key advantage of the proposed approach is that one can systematically characterize the effects of various parameters of a combustor system on combustion instability. Our analysis method was applied to a real combustion system and the analysis results were consistent with experimental data.

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Compensation of Harmonic Disturbances within Nyquist Frequency in Hard Disk Drives (하드 디스크 드라이브에서 나이퀴스트 주파수 안의 고조파 외란 보상)

  • Suh, Sang-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.872-875
    • /
    • 2010
  • This paper describes new harmonic disturbance compensation based on a peak filter array for Hard Disk Drives. Unlike a conventional method, the proposed method does not require any sin/cos functions or tables and reduces effects of all harmonic disturbances within a nyquist frequency. Two factors are introduced to parameterize stability and a gain tune. In addition, it is verified that the order of the proposed filter is minimal. From 600 experimental results, 8.5% performance improvement is achieved.

Modified method for auto-tuning of PID controller using relay feedback (릴레이 피드백을 이용한 개선된 PID 제어기 자동동조 기법)

  • 신창훈;윤명현;정학영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1004-1007
    • /
    • 1996
  • Various auto-tuning methods using relay feedback are presented recently. They are composed of the consecutive procedures identifying Nyquist critical point using relay feedback and designing PID controller by one point of Nyquist plot mapping. This paper suggests a strategy to get the knowledges of Nyquist critical point and the neighborhood point of it using relay feedback. The parameters of PID controller are established by dominant pole approximation based on these knowledges. Designers can make use of the damping ratio as a time domain specification. So design flexibilities are taken in view of stability and performance of the system response considering practical system condition.

  • PDF

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

The Analysis of Stability in a Steam Generator (증기발생기의 안정성 분석)

  • Shin Whan Kim;Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.279-289
    • /
    • 1985
  • The purpose of this paper is to investigate the density-wave oscillation type instability in the recirculating loop of U-tube steam generator (UTSG). The perturbed and nodalized conservations equations based on the drift-flux model have been derived to obtain the single-and two-phase pressure drop perturbations, by taking into account the slip between phases, nonuniform heat flux and heated wall dynamics. To assess the stability, the frequency domain technique with the Nyquist criterion has been used under the constant pressure drop boundary condition through the loop. The computer implementation of this model, SASG, was used for the parametric study of the steam generator in Kori-Unit 1. The results of the parametric study revealed important factors influencing UTSG stability margin.

  • PDF