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Abstract

The Xenon spatial oscillation may give rise to operational difficulties in a nuclear power
plant. In this study, in order to investigate the Xenon instability for a PWR, the frequency—do-
main technique is adopted by using Generalized Nyquist Criterion, which is more general and
suitable for the multi—input/multi-output system. Also linearized modal fluxes are obtained by
a modal expansion. This model has been implemented to test the axial Xenon stability of
YGN-1 unit against the changes in plant operating parameters; power level, control rod
position, and core average burnup. The results show that the increase of power level and the
deeper insertion of control rod have the destabilizing effect, and that the bumup progress
makes the core less stable. Also the results show that the overestimation due to modal
interaction was found not to be significant.
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D(z) : neutron diffusion coefficient
Pz, 8 : one group neutron flux
2,2 : macroscopic neutron absorption cross—section
22 : macroscopic neutron fission cross—section
keo(z, 1) : infinite multiplication factor
Un : average number of neutrons generated per fission
Iz, t) : iodine number density
Xz, 1) : Xenon number density
Ay : decay constant of 1-135
Ay : decay constant of Xe-135
7 (2) : yield fraction of 1-135
Y x{2) : yield fraction of Xe-135
o (2} : microscopic absorption cross—section of Xe-135
v : neutron velocity
$(2) : steady state neutron flux
Iolz) : steady state iodine number density
Xolz) : steady state xenon number density

1. Introduction

A various kinds of the study of the stability
against xenon oscillation have been developed.
For the space and time dependent reactor stability
problem of neutron flux shape variations due to
xenon oscillation, the modal expansion method
with or without an eigenvalue type method is
often used.!?

The advantages of modal expansion method are
to approximate the unknown functions of space
and time by a linear combination of known space
functions with time dependent coefficients and not
to find all the solutions which can be the reactor
parameters. Through this method, the finite set of
partial differential equations describing the prob-
lem is replaced by an infinite set of ordinary dif-
ferential equations.>1?

Another attention of this paper is drawn to the
most developed eigenvalue type stability inves-
tigation. This is a part of frequency—~domain stabil-
ity method using Generalized Nyquist
Criterion.>® This method forms a characteristic

transfer function' matrix and calculates the determi-
nant of the matrix to investigate the stability. The
eigenvalue type method cannot be solved, unless
the transfer function matrix has non zero determi-
nant and has the complexity to find all its eigenva-
lues. If, however, the system could be described
as multi-input/multi~output system with un-
ity—feedback, the Generalized Nyquist Criterion is
introduced to see the effect of the space—depen-
dent reactor kinetics problem.® This criterion only
requires diagonally dominant transfer function
matrix as an option. Then the system is reduced
to m single~input/single—output system which is
simpler and more convenient.

From this point of view, this paper deals with
the stability against xenon spatial oscillation using
modal expansion method and the Generalized Ny-
quist Criterion.

- To examine the adaptability, we study the axial
stability in a PWR core to the changes in core
physical parameters such as power level, control
rod position, and core average bumup. Through
this study, Yonggwang 1 core is analyzed against
the axial xenon oscillation. The data correspond-
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ing to core parameters were achieved from referr-
ence 12.

The prescedent investigators!>® found that
omega method does not have the property of
finality. So the modal coefficients are coupled
with higher modes, which leads to affecting the
degree of stability.

2. Model Description
2.1. Reactor Kinetics State Equations

For simplicity, one group neutron flux with the
averaged delayed neutron is assumed.

The most important fission product poison is
Xe-135, which is formed as the result of the
decay of I-135. The I-135 is also formed in fis-
sion and by the decay of Te-135. In view of fact
that Te-135 decays so rapidly to [-135, it is possi-
ble to assume that all [-135 are produced directly
in fission.

An input is taken as the perturbation of infinite
multiplication factor, which then becomes the
negative feedback influenced by the change of
xenon number density.

% i%f—’i):v *D2)v (z, 1)
— 22z Ht vif) $(z 1),
2Ll e 9+ Y@S@AGY, )
a—)g“zt’-ﬂ=* Ax Xz, )— 0 xz) $(z, 1) Xz, 1)
+ A1z, )+ 7x(2) Sh2) d(z, 1),
keolz, )= v 2fe)

a2+ axlz) Xz, 1) .
2.2. Linearization
Let the initial flux be known as ®;. From the

equations (1), the initial values of xenon number
density and infinite multiplication factor can be

verified. Then, the steady state equations for neut-
ron balance, iodine-xenon number densities, and
infinite multiplication factor are as follows ;
0= Dfz) V $olz)—(Z.2)+ 0 x(z) Xolz)
+ vZ42) $ol2),
0=—A;Ilpl2)+ 7 ((z) Z(z) ¢ ol2), )
0=—Ax Xolz2)+ A; lo(z)— (7 x(z) Xolz)
+ 7 xl2) 2f2)) $o(z),
— v 3{2)
S a2+ o xl(2) Xolz) -

From Egs.(2), the steady state of xenon number

koo plz)=

density is given as
Y Azl+ 7
Xoto) = LI TAD 2 4 ) ®)

Now, if the steady state is known, all

time—dependent variables will be expressed with
the perturbed quantities as

$(z, )= $olz)+ 0 8 (2, 1),

Iz, )=Iy(z)+ &Iz, 1),

X(z, )=Xplz)+ & Xz, t),

X(z, y=Xp(2)+ & X(z, 1), (4)

koolZ, 1)=koo (2} + & kiz, 1),

Inserting Egs.(4) into Egs.(1) and subtracting the
steady state part, the system equation then be-

comes.
1 o _
" *aTa $(z, )=

VD)V $(z, )—S42) S¢(z 8
— 0 x(2) Xolz)) & ¢1(z, )+ ¢ 2) & Xz, t) (5)
H(Z o2} 0 xlz) Xol2)) keoolz) & ¢z, 1)
H(Z 42+ 0 xl2) Xolz)) $olz) dklz, 1),

i61(2, t)=—

ot A I(Z, t)
+ yﬁZ) [ 2 x{2)koo of2) # of2) 0 X(z, 1) 6)

H{(Z,(2)+ 0 xlz) Xol2)) keoolz) & ¢z, 1)
+(Z42)t 0 x(2) Xolz)) $olz) Skiz, 1],

%axa, f=— AxdXlz, H+ A; oz, 1)
— 0 x{z) Xolz) & ¢ (z, B+ B olz) S Xz, 1) (7)

+ 752) [oxlz) kolz) #ofz) S Xz o)
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+(Z 2}t 7 xl2)keoofz) & (2,
H(Z42)+ o x{2) Xolz2)) $ol2) Oz, D),

v Sd2) o xl2)
(24(2)+ o xl2) Xz, 1)

Here the nonlinear terms are ignored since their

S kiz, =

)2 Xz, t) (8

contributions are too little in comparison with the
linear terms.

2.3. Modal Expansion

In order to solve the above equation, the per-
turbed quantities are modal-expanded as,

8¢z =2 aft) ¢,

0 lz, )= 2 by(t) ¢ o(2), 9

d X, t)=§ bu(t) ¢ .(2).

In Eq.(9) ¢, and @, are the eigenvectors and
the eigenvalues, respectively in the
omega~-mode!, which satisfy

VDRV Y )~ Z2) ¢ (2

¥n
v

+ S f)=—"9 2). (10)

In combination with the eigenvalues of the ad-
joint equation,
=~ - DYV ¢ 2)— Z42) ¢ o)

*
wn

+ v2fz)= ¢ n¥a). an

v

these eigenvectors have the biorthogonality
properties as

n
SH'";;}dz ¢,z - ¢ %)
[} Een= 12)
0 if w,#w,*

Although the omega-mode method does not
have the property of finality, the interactions of
the expansion coefficients can be reduced in
xenon stability to have the property of finality.?!"
If we assume that the set of eigenvalues @ * is
the same as the set @, and the eigenvectors ¢,
form a complete set, then the expansion coeffi-
cients are given explicitly in terms of the unknown

8 #(z, 1), in view of Eq.(12), as
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1 *
G,-,(t) ‘ ; 1 {dz S[}m(z) ‘ sbn(z)
HI Y

| *
={ Az ¢ 36 1. (13)

The biorthogonality of Eq. (12) leads to some
simplification in modal equations, but does not
decouple the different modal equations, which
means that this does not lead to finality.” This
finality can beachievedif we let the time scale of

delayed neutrons equal to prompt neutrons. 2!

3. Generalized Nyquist Criterion

An attention is restricted to the case of a un-
ity—negative feedback system with m—input/
m—output which interacts with each other through
mXm transfer function matrix Q(s).

The stability of the closed loop system is de-
scribed by the return difference determinant

P A/ ofs)= | T(s) | = | In+Qls) | (14)

Where p_(s) and Pgls) are the closed loop and
open loop characteristic polynomials,
respectively.? To obtain a relationship between
closed—loop stability and the characteristic transfer
functions, it is necessary to move into the realm of
a multivariable equivalent to the Nyquist stability
criterion.

The symbol D will be used to denote the usual
Nyquist contour in the complex plane consisting
of the imaginary axis s=iw, |w|<R and the
semicircle | s|=R in the right half complex plane,

where R is large enough to ensure that all the
right half plane zeros of £(S) and (s} lie within
D. Suppose that #(s) has n_ zeros in the interior of

D and Pgls) has n, zeros in the interior of D.

If T is the closed~contour in the complex plane
generated by | T(s)| when s varies onDin a clock-
wise manner, it follows directly from the identity
Eq.(4),

ne—ny,=nr. (15)

where nr is the number of clockwise encircle-
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ments of about the origin of the complex plane.
Noting that n. and n, represent the number of
unstable poles of the closed-loop and open-loop

8 respectively, then the closed—loop sys-

system,
tem is asymptotically stable if, and only if, n,= 0,
i.e,

n,+nr=0 (16)

To avoid the complexity of the eigenvalue—-type
methods, we need the structural constraintment
on Q(s) in the form of diagonal dominance condi-
tions. This can be easily verified. Let 1; {or r;) be
the sum of off-diagonalerms in ith column (or
row). This r; (or r) is the radius of Gershgorin
circle. The Gershgorin circle is very useful to find
the diagonal dominance of frequency dominated
transfer function matrix.

=3 el a7
or
r= .%,4, | Qyts) | .

The transfer function matrix Q(s) is diagonally
dominant at every point |s| on the D contour,
if, and only if, the Gershgorin circle® of radius r;
(or 1) does not encircle the point (—1, 0) on the
polar plot as seen in Fig. 2. Let the diagonal
transfer functions Qy(s) map D onto closed—con-
tours C; encircling the (—1, 0) point of the com-
plex plane n; times, 1<j<<m, in a clockwise man-
ner, then

nr= g

j-

m, (18)

1

and, from Eq.(15), the closed-loop system is
asymptotically stable if, and only if,

m

et 3 n=0. (19)

4. Numerical Scheme.
4.1. Finite Difference Approximation.

The diffusion equation, Eq.(5) has the boundary

7

conditions expressed by a general form” as

—dqzﬂ/l,,(z)-i- Y ¢lz)=0. (20)

Here we assume that ¢ =0 and ¢ ,(xH/2)=
0, where H is the length of core. One general
technique for obtaining finite difference solutions
is the usage of box integration method.” If we
take the integration of Eq.(5), the diffusion term is
of the form

7+ A‘;’l
dz ¥ - D(2)7 ¢ (2)

P
a2

o Pic1— ¢ Siv1— i
=D; 2~ +D;+, TR (21)
The non—diffusion terms are of the form
i+ A,‘2+1
Jay
dZ E(Z)zEISbIT (22)

zi——%—

2

Where the continuity of current at-z; has been
employed to cancel the derivatives evaluated at z,

and central difference approximations have been

PaN
made for ‘gerivlatives evaluated between z,— 5
and z+ i2+

4.2. Eigenvalue Problem.

In need of finding all the eigenvalues and the
corresponding eigenvectors, various iterative
methods are suggested. Among them, the inverse
power method is adapted to solve the eigenvalue
problem.® This can be done with the inverse
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iteration in the power method. The inverse itera-
tion requires the construction of the matrix (B-pl)
where B is of the matrix from finite difference
diffusion equation.

B¢,=w, ¢, 23)

and p is a value quite close to one of the
eigenvalues @ -+--- @, then from

B-ph ¢ (D= g m (24)

Once we have obtained a PLU factorization for
the matrix (B—pl), we obtain ¢,™ from ¢ ™1
by forward-backward substitution.

4.3. Formulation of Transfer Function.

With all set of eigenvalues and eigenvectors
known, Egs.(5) are then multiplied by the adjoint
eigenvector set of ¢ *, which are just self adjoint,
and then integrated over the entire volume using
the biorthogonality Eq.(12), which are then La-
place transformed.

By Lapalace transforming, the linearized expan-
sion coefficients have transfer functions of the

form
lan(s) = IFGs) {8 kols) (25)
From
YA,3
#;L.-F 7 x5~ 0 xXo
8 X(s)= si pp 34 (26

and Eq.9), the xenon expansion coefficient
d.(s) can be expressed in terms of & k,.(s).

idn(s) = 1Gs) lan(s)l (27)
= {Gls)} IF(s) 18 kuxls)
Skext 3¢
RT F(s)
H(s) G(s)
Bk ¢ X

Fig.1. Block Diagram of Transfer Function
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and the negative feedback, ¢ k(s) becomes

10 ki) = Hish 1G(s) Fs) {0 kouls)  (28)

= {QsH 10 keeds)!

Then the diagonal terms Qs) in the transfer
function matrix Q(s) are investigated to the stability
along the varying frequency already given.

5. Results
5.1. Effect of mesh size on stability

An optimal node number should be used for
this study because the variation of mesh size can
affect the loop stability. Form the Table 1., by
increasing the number of nodes from 6 to 20,
stability decreases gradually, afterwards, however,
there’s a little change, less than 1% difference on
stability. The number of nodes for further study is
assumed to be 20 to see the worst case.

Table 1. Effect of mesh size on Stability

number of node|power(%)| mesh sizelin) | COP
6 100 24 -3271

12 100 12 -.3826

18 100 8 -.4133

20 100 72 ~.4262

24 100 6 -.4257

48 100 3 4258

COP-Cross—Over Point on the real axis on Ny-
quist Plot.

5.2, Diagonal Dominace

First of all, if the transfer function matrix Q(s)
does not have a diagonal dominance, the Gener-
alized Nyquist Criterion cannot be used. So, the
diagonal dominance of Q(s) was investigated for
the extreme case of ryo (10th column or row),
100% power.

As shown in Fig. 2., the dotted Gershgorin cir-
cles at various frequencies do not encircle the
point (-1, 0), and even, are getting smaller as
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frquency increases. Then, the transfer function
matrix Q(s) is found diagonally dominant, which
allows to use the Generalized Nyquist Criterion.

5.4. Effect of Control Rod Position on Stability.

Fig. 5. and Fig. 6. illustrate the power distribu-

In tion at total power level 100% and xenon con-

centration distribution, respectively. From Fig. 4,

and Table 3, the maximum COP occurrs at peak
power and xenon number density.

The comparison of these COP values indicates

100

that deeper the control rod position is, less stable
the core is.
Table 3. Effect of Control Rod Position on Stability.
rod position | power |loop number| COP
Fig.2. The Gershgorin circles of Nyquist contour (% from top) | (%)
5.3. Effect of Power Level Variation on Stability. 20 100 11 5012
40 100 13 —-.6573
With cosine shaped bumup distribution the max- 60 100 17 —9211
80 100 18 -1.225

imum COP occurs at the middle of the core which
can be the result of the initial power shape. As
shown in Table 2. and Fig. 3. an increase in
power level causes decrease in stability.

Table 2. Effect of Power’Level Variation on Sta-

bility
power level loop number cop
50% 10,11 -.3741
80% 10,11 ~.4047
100% 10,11 ~.4262
Fig.4. Nyquist Plot for Variation

Fig.3. Nyquist Plot for Power Level Variation

of Control Rod Position
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Fig.5. Power Distribution due to Various
Control Rod Position
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XENON CONCENTRATION

7
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N
ANREN

BOTTOM
AXIAL NODE

Fig.6. Xenon Concentration Distribution due to
Yarious Control Rod Position

5.5. Effect of Burnup Distrbution on Stability.

At the constant 100%, the power shape differs
from the cosine-shape as fuel burup progresses.
When 150 MWD/MTU was regarded enough as
BOL, 6000 MWD/MTU and 14000 MWD/MTU
were regarded as MOL and EOL, respectively, the
stability at EOL was found more unstable than
that of BOL, from Table 4. Because the peak
power shifts from node number 10 to node num-
ber 7, the most unstable loop number shifts as
well. This leads to less stable core against xenon
oscillation.

Table 4. Effect of Burnup Distribution on Stability

J. Korean Nuclear Society, Vol. 22, No. 4, December 1990

5.6. Effect of Mode Coupling on Stability.

Table 5. and Fig 8. represent the effect of in-
teraction between different modes. Analyzed are
variations of modal expansion limit. Up to now,
calculation has been carried out with expansion
into two modes on Egs.(9). From Table 5., modal
expansion into three or four modes leads to more
stable in 100% power level with all rod out situa-
tion. The difference, however, was found slight
from the two mode expansion. Since the omega
mode does not have the property of finality, this
overestimation of stability is taken for granted.

Table 5. Effect of Mode Coupling on Stability

Modes |power(%)] node number | COP
TWO 100 10,11 —.4262

THREE 100 10,11 -.4143

FOUR 100 10,11 -.4040
e TWO (MODES) 2

o
&

-]
m

Burmup(MWD/MTU) | power(%) [loop number; COP
150 100 10,11 -4262
6000 100 8 |[-5431
14000 100 7 |-7900
F ['5
u.auom/myr”’ — :‘\\ :ﬁ
’ - ~ L-.
II 6.000 m/u? 4 \ L
! 150 SWD/MTY -2
.””_"'.“ ! - pe
100 \ w0y \:&m/ LT ek
\ N "4
\\ ~ - v |
N T Ki

-0,

Fig.7. Nyquist Plot for Bumup Distribution
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Fig.8. Nyquist Plot for Mode Coupling

6. Discussion and Conclusion

The generalized Nyquist Criterion is suitable for
the stability analysis of the space and time depen-
dent reactor kinetics problem such as xenon
oscillation. The prescedent study dealt only with
the stability on overall system, but the Generalized
Nyquist Criterion makes it possible to see the
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effect of each node on stability.

A study using the Generalized Nyquist Criterion
was done for YGN 1 core against xenon oscilla-
tion with the changes of core parameters. The
power level increase leads to less stable core. Also
the control rod position and the bumup distribu-
tion are able to influence the stability. The modal
method was found exact to represent the kinetics
variables.

This work was done just to see the behaviour of

reactor kinetics parameters, so further study
should be taken as adding the effect of Tempera-

ture and Void coefficient and for other reactor
parameters.
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