• Title/Summary/Keyword: Nutrients dynamics

Search Result 126, Processing Time 0.025 seconds

Nutrient Dynamics in Decomposing Leaf Litter and Litter Production at the Long-Term Ecological Research Site in Mt. Gyebangsan (계방산 장기생태조사지의 낙엽 생산량 및 낙엽 분해에 따른 양분 동태)

  • Lee, Im-Kyun;Lim, Jong-Hwan;Kim, Choon-Sig;Kim, Young-Kul
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.585-591
    • /
    • 2006
  • We measured the litterfall quantity and investigated the nutrient dynamics in decomposing litter for three years at the LTER sites installed in a deciduous broadleaf natural forest in Mt. Gyebangsan, South Korea. Litterfall production was significantly different among the sampling dates, whereas it was not significantly different among the years. The total annual mean litterfall production for three years was 6,593 kg $ha^{-1}$ $yr^{-1}$ and leaf litter accounted for 82.6% of the litterfall. The leaf litter quantity was highest in Quercus mongolia, followed by leaf of other species, Betula schmidtii, Kaplopanax pictus, Acer pseudo-sieboldianum, etc., which are dominant tree species in the site. The mass loss from the decomposition of leaf litter was fastest in Cortinus controversa (100%), followed by A. preudo-sieboldianum, K. pictus, and B. schmidtii. 100% of litter for C. controversa, 96.1% for A. pseudo-sieboldianum, 92.8% for K. pictus decomposed, while 66.2% of litter for Q. mongolia decayed for 1,003 days. The lower rate of the mass loss in the litter of Q. mongolia may be attributed to the difference in substrate quality, such as lower nutrient concentrations compared with those of other tree species. The concentrations of N, P, and Ca for five litter types increased over time, while the concentrations of K and Mg decreased over time. Compared with the nutrients in the litter of Q. mongolia, the nutrients (N, P, K, Ca, Mg) in the litter of other species, C. controversa, A. pseudo-sieboldianum, and K. pictus, were released more rapidly. The results showed that the mass loss and the nutrient dynamics in the litter are variable depending on the tree species even in the same site conditions.

A Kinetic Modeling for the Dynamics of Hybridoma Cells in Suspension Culture (현탁배양 하이브리도마 세포의 속도론적 모델링)

  • 정연호;박현규최정우
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.276-287
    • /
    • 1996
  • Batch suspension cultures of hybridoma cell were performed with various initial glutamine concentrations to investigate the effects of glutamine on cell growth and death, monoclonal antibody production, glucose and glutamine consumption, and the production of lactate and ammonium ion. An mathematical kinetic model was formulated to describe the kinetics of cell growth, the consumption of nutrients (glucose and glutamine), and the production of monoclonal antibody and waste metabolites (lactate and ammonium ion) based on experimental data. An equation for the specific growth rate was developed such that superimposed Monod equation in glucose and glutamine, with non-competitive type inhibition relations in ammonium ion and lactate. The inhibition constant for lactate was inversely proportional to the lactate concentration. The specific death rate was considered to be a function of glucose, glutamine, ammonium ion and lactate concentration.

  • PDF

Preliminary Assessment of Human Inpacts on Water Qualities (Nutrient Concentration) of the Han River on the Korean Peninsula, Based on a Mathematical Model (數學 model 에 依한 漢江의 水質 ( 영양소농도 ) 에 미치는 人間의 影響에 關한 豫察)

  • Nakane, Kaneyuki;Mitsuo MItsudera;Yang-Jai Yim;Sa-Uk Hong
    • The Korean Journal of Ecology
    • /
    • v.7 no.3
    • /
    • pp.109-118
    • /
    • 1983
  • Near future dynamics of water qualities (nutrient concentration) of the Han River was predicted, based on a mathematical model representing the relationship between the nutrient concentration in th river wagter and environmental factors (population density, land-use types, rock compositions and nutrient accumulation) in the basin. The population density and land-use types were forecasted to change distinctly in the downstream area, especially in Seoul City area in 1985~1990 whereas any environmental factor was not expected to change its level significantly in both upstream and middle reaches areas. It was indicated by the model that the nutrients concentration in the up- and mid-streams would keep its level in future as it was, but it would increase drastially in the downstream area. For the preservation of the water qualities in the downstream at least to keep its level as it was in 1980, practical countermeasures were proposed, based on the assessment of the contribution of each environmental factor to the water qualities.

  • PDF

Microbiome-Linked Crosstalk in the Gastrointestinal Exposome towards Host Health and Disease

  • Moon, Yuseok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.4
    • /
    • pp.221-228
    • /
    • 2016
  • The gastrointestinal exposome represents the integration of all xenobiotic components and host-derived endogenous components affecting the host health, disease progression and ultimately clinical outcomes during the lifespan. The human gut microbiome as a dynamic exposome of commensalism continuously interacts with other exogenous exposome as well as host sentineling components including the immune and neuroendocrine circuit. The composition and diversity of the microbiome are established on the basis of the luminal environment (physical, chemical and biological exposome) and host surveillance at each part of the gastrointestinal lining. Whereas the chemical exposome derived from nutrients and other xenobiotics can influence the dynamics of microbiome community (the stability, diversity, or resilience), the microbiomes reciprocally alter the bioavailability and activities of the chemical exposome in the mucosa. In particular, xenobiotic metabolites by the gut microbial enzymes can be either beneficial or detrimental to the host health although xenobiotics can alter the composition and diversity of the gut microbiome. The integration of the mucosal crosstalk in the exposome determines the fate of microbiome community and host response to the etiologic factors of disease. Therefore, the network between microbiome and other mucosal exposome would provide new insights into the clinical intervention against the mucosal or systemic disorders via regulation of the gut-associated immunological, metabolic, or neuroendocrine system.

Dynamics of Plant Communities under Human Impact in the Green Belt nearby Seoul - The Balance of Litter Production and Decomposition in the Forests (人間干涉하의 首都圈 그린벨트내 植物群集의 動態 - 森林群落에 있어서 落葉의 生産과 分解의 平衡)

  • Chang, Nam-Kee;Byeong-Kiu Kim;Duck-Key Lee
    • The Korean Journal of Ecology
    • /
    • v.14 no.2
    • /
    • pp.171-179
    • /
    • 1991
  • In this study, the balnce of the litter production and decompsition on the forest floors in the green belt nearby seoul, which had been established in 1972, and turnover cycles of minerral nutrients were inverstigated. litter production and decomposition in the forests of quercus accutissima, q, serrata, q. mongolica, salix koreensis and alnus hirsuta were reached at the equilibium stated from 1972 to 1988 but this balance in the pine forest of pinus densiflore and p. rigida was not. Under the forests in the blance of the litter production and decomposition, the maximum amounts of n, p, k, ca and na retured to soil annually were 4.9g/㎡ in the alnus hirsuta forest, 0.35g/㎡ in the salix koreensis forest, 2.70g/㎡ in the quercus accutissima forest, 8.85g/㎡ in the s. koreensis forest and 3.93g/㎡ in the s. koreensis forest, respectively, and the minimum were 2.8g/㎡ in the s. koreensis forest, 0.108g/㎡ in the q. mongolica forest, 0.06g/㎡ in the s. koreensis forest, 2.12g/㎡ q. mongolica forest and 0.15g/㎡ in the q.accutissima forest.

  • PDF

Behavior of Bacteria on the Porous Substrates: Diffusion Effect (다공성 매질 표면에서 박테리아의 거동: 확산의 영향)

  • Cho, Myoung-Ock;Cho, Ji-Yong;Park, Eun-Jung;Lee, Dong-Hee;Lee, Jeong-Hoon;Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • It has been found that the colony size of bacteria grown on an agar plate decreases with increasing agar gel concentration. Evidenc from recent studies suggests that the bacterial colony dynamics is closely related with the mechanical properties of the substrate. We investigate whether bacterial growth on the agar substrate is controlled mostly by the nutrients' diffusion which is hindered more in porous medium than in solution. The number of bacterial cells in single colonies is found to be inversely correlated with agar concentration. High-resolution live cell imaging at the single bacterium level confirms that the bacterial growth rate is reduced with increasing agar concentration. There is a strong correlation between the slowed diffusion and the reduced number of cells in a high concentration of agar medium.

Nutrient Behavior in an Upland Field of Cabbage Adjacent to the River (하천변 양배추 밭에서의 영양물질의 거동)

  • Song, Chul-Min;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.65-71
    • /
    • 2010
  • This study was conducted to investigate the dynamics of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in outflow from a cabbage farmland in a mixed land-use watershed. The TN concentrations in groundwater showed twice peaks in late July 2006 and late March 2007 (3.8, 4.7 mg/L, respectively), when it rained shortly after fertilizer application, indicating that nitrogen leaching is greatly influenced by fertilization and rainfall. The mean concentrations of TN and $NO_3$-N in surface water were not significantly higher than those in groundwater, while the mean concentrations of TP and $PO_4$-P in surface water were significantly (p < 0.05) were higher than those in groundwater. The TN concentrations in groundwater were generally higher than those in surface water during fertilization and early growing season due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in groundwater were always lower than those in surface water due to the sorption of particulate phosphorous by soil. The ratio of TN load in baseflow to that in total TN load (39 %) was much greater than the TP ratio (7 %), suggesting that baseflow contribute to nitrogen export. Therefore, proper fertilization management should be taken to reduce nitrogen load through baseflow.

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

Spatial Point-pattern Analysis of a Population of Lodgepole Pine

  • Chhin, Sophan;Huang, Shongming
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.419-428
    • /
    • 2018
  • Spatial point-patterns analyses were conducted to provide insight into the ecological process behind competition and mortality in two lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands, one in the Lower Foothills, and the other in the Upper Foothills natural subregions in the boreal forest of Alberta, Canada. Spatial statistical tests were applied to live and dead trees and included Clark-Evans nearest neighbor statistic (R), nearest neighbor distribution function (G(r)), and a variant of Ripley's K function (L(r)). In both lodgepole pine plots, the results indicated that there was significant regularity in the spatial point-pattern of the surviving trees which indicates that competition has been a key driver of mortality and forest dynamics in these plots. Dead trees generally showed a clumping pattern in higher density patches. There were also significant bivariate relationships between live and dead trees, but the relationships differed by natural subregion. In the Lower Foothills plot there was significant attraction between live and dead tees which suggests mainly one-sided competition for light. In contrast, in the Upper Foothills plot, there was significant repulsion between live and dead trees which suggests two-sided competition for soil nutrients and soil moisture.

Decomposition and Nutrient Dynamics of Leaf Litter of Camellia japonica L. in Korea (동백나무(Camellia japonica L.) 낙엽의 분해와 영양원소의 동태)

  • Cha, Sangsub;Lee, Kyung-Eui;Lee, Sang-Hoon;Choi, Moonjong;Shim, Jae Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.110-117
    • /
    • 2016
  • Litter fall is a source of nutrients and carbon transfer in terrestrial ecosystems. Litter decomposition provides nutrients needed for plant growth, sustains soil fertility, and supplies $CO_2$ to the atmosphere. We collected the leaf litter of evergreen broadleaf tree, Camellia japonica L., and carried out a decomposition experiment using the litterbag method in Ju-do, Wando-gun, Korea for 731 days from Dec 25, 2011 to Dec 25, 2013. The leaf litter of C. japonica remained 42.6% of the initial litter mass after experiment. The decay constant (k) of C. japonica leaf litter was $0.427yr^{-1}$. The carbon content of C. japonica leaf litter was 44.6%, and the remaining carbon content during the decomposition tended to coincide with the changes in litter mass. The initial nitrogen and phosphorus content was 0.47% and 324.7 mg/g, respectively. The remaining N in decaying litter increased 1.66-fold in the early decomposition stage, then gradually decreased to 1.18-fold after 731 days. The content of P showed the highest value (1.64-fold of initial content) after 456 days, which then fell to a 1.15-fold after 731 days. The remaining Ca, K, Mg and Na content in C. japonica leaf litter tended to decrease during decomposition. The remaining K showed a remaining mass of 8.9% as a result of rapid reduction. The initial C/N and C/P ratio of C. japonica leaf litter was 94.87 and 1368.5, respectively. However, it tended to decrease as decomposition progressed because of the immobilization of N and P (2.78 and 2.68-fold of initial content, respectively) during the leaf litter decaying. The study results showed that N and P was immobilized and other nutrients was mineralized in C. japonica leaf litter during experimental period.