• Title/Summary/Keyword: Nutrients Removal

Search Result 306, Processing Time 0.038 seconds

The Effect of Floating Wetland on Water Quality Improvement in a Eutrophic Lake (부유습지를 이용한 부영양수계 현장 수질개선 효과)

  • Park, Chae-Hong;Park, Myung-Hwan;Choi, Dong-Ho;Choi, Hyung-Joo;Lee, Joon-Heon;Lee, Myung-Hoon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.116-127
    • /
    • 2013
  • At weekly intervals, we monitored continuous changes in water quality by constructed floating wetland equipped with the four different filter media (sponge, volcanic stone, activated carbon and magnesium hydroxide) in a eutrophic lake from March 2011 to May 2012. We also investigated phyto- and zooplankton communities both in the influent and the effluent water through the floating wetland. Over a 10-month time period, average turbidity (66%), suspended solids (79%) and chlorophyll-a (80%) concentrations were remarkably reduced in the effluent water compared to the influent (P<0.001). The average removal rates of $NO_2-N$ and $NH_3-N$ were 24% and 20%, respectively (P<0.05). The average removal rates of $NO_3-N$ and TN were less than 10% (P>0.05). On the other hand, the average removal rates of $PO_4-P$ and TP were more than 65% (P<0.01). Interestingly, the abundance of phytoplankton in the effluent was decreased about 2.6 times compared to that of the influent, whereas the abundance of zooplankton in the effluent was increased about 3.5 times compared to that of the influent. Overall, particulate matters (SS, Chl-a and TP) and dissolved nutrients ($NO_2-N$, $NH_3-N$ and $PO_4-P$) were particularly reduced at high rates. Therefore, application of our constructed floating wetland in a eutrophic lake improved the water quality and demonstrated a potential for algal bloom mitigation.

Removal of Nitrogen and Phosphorus Using Struvite Crystallization (Struvite 결정화에 의한 질소 및 인의 제거)

  • Weon, Seung-Yeon;Park, Seung-Kook;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.599-607
    • /
    • 2000
  • In this research, ${NH_4}^+-N$ and ${PO_4}^{3-}-P$ in wastewater were removed by crystallization. Nitrogen and phosphate have been regarded as key nutrients in the eutrophication of rivers and lakes. Struvite, $MgNH_4PO_4{\cdot}6H_2O$, is insoluble in alkaline solutions. Fertilizer industry wastewater contains organic and nitrogen concentration of 330 mg/L and 550 mg/L, respectively. Nitrogen in this wastewater cannot be treated by conventional biological treatment without physicochemical pretreatment, because nitrogen concentration is relatively high compared to organic concentration. Magnesium ions used in this study were from bittern and commercial magnesium salts of $MgCl_2$ and $Mg(OH)_2$. Bittern obtained as a by-product of seasalt manufacture contains $8,000mg\;Ca^{2+}/L$ and $32,000mg\;Mg^{2+}/L$. Optimum initial pH was 10.5~11.0 and the reaction was complete or done in 2 min. Nitrogen removal efficiency using bittern, $MgCl_2 $ and $Mg(OH)_2$ (as source of $Mg^{2+}$) was 71 %, 81% and 83%. respectively. Phosphate removal efficiency was 99%, 98% and 93%, respectively. Therefore, bittern, $MgCl_2$ and $Mg(OH)_2$ can be efficiently used as $Mg^{2+}$ source for crystallization of nitrogen and phosphate. However, bittern is economically favorable $Mg^{2+}$ source for removing nitrogen and phosphate in wastewater.

  • PDF

A Biological Complex Soil Treatment Process Using Selected Soil Bacterial Strains (현장 미생물을 이용한 생물학적 복합토양정화공정에 관한 연구)

  • Cha, Minwhan;Lee, Hanuk;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.5-13
    • /
    • 2010
  • The research is intended to develop and verify a biological complex soil treatment process to treat and restore soil and groundwater which is contaminated with oil, heavy metals, and nutrients through experiments with the series of treatment process such as bioreactor, rolled pipe type of contact oxidation system(RPS), and chemical processing system. 5 microbial strains were separated and selected through experiment, whose soil purification efficiency was excellent, and it was noted that anion- and nonion-series of complex agent was most excellent as a surfactant for effectively separating oils from soils. Method to mix and apply selected microbes after treating the surfactant in the contaminated soil was most effective. The removal efficiencies of total petroleum hydrocarbon (TPH)-contaminated soil about 5,000mg/L and above 10,000mg/L were approximatly 90.0% for 28 days and 90.7% for 81 days by soil remediation system and the average removal efficiencies of BOD, $COD_{Mn}$, SS, T-N, and T-P in leachate were 90.6, 73.0, 91.9, 73.8, 65.7% by the bioreactor and RPS. The removal efficiency was above 99.0% by chemical processing system into cohesive agents.

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP) (미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산)

  • Choi, Jong-Eun;Kim, Byung-Hyuk;Kang, Zion;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.26-34
    • /
    • 2014
  • Due to the rapid energy consumption and fossil fuel abundance reduction, the world is progressively in need of alternative and renewable energy sources such as biodiesel. Biodiesel from microalgae offers high hopes to the scientific world for its potential as well as its non-competition with arable lands. Taking consideration to reduce the cost of production as well as to attain twin environmental goals of treatment and use of animal waste material the microalgal cultivation using piggery manure has been tested in this study. Unialgal strains such as Chlorella sp. JK2, Scenedesmus sp. JK10, and an indigenous mixed microalgal culture CSS were cultured for 20 days in diluted piggery manure using Small Scale Raceway Pond (SSRP). Biomass production and lipid productivity of CSS were $1.19{\pm}0.09gL^{-1}$, $12.44{\pm}0.38mgL^{-1}day^{-1}$, respectively and almost twice that of unialgal strains. Also, total nitrogen and total phosphorus removal efficiencies of CSS was 93.6% and 98.5% respectively and 30% higher removal efficiency compared to the use of unialgal strains. These results indicate that the piggery manure can provide microalgae necessary nitrogen and phosphorus for growth thereby effectively treating the manure. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.

Top-down Fish Biomanipulation Experiments on Algal Removal Effects (조류제거 효과에 대한 Top-down 어류 조작실험)

  • Lee, Sang-Jae;Lee, Jae-Yon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.431-438
    • /
    • 2007
  • This study was to test algal removal efficiency by top-down fish biomanipulation experiments in the laboratory during Agust${\sim}$September 2000. We selected eight candidate fishes for the biomanipulation. We set up the experiments of eight fish-treatment tanks (3${\sim}$6 fishes) with initial chlorophyll-${\alpha}$ concentrations (CHL-${\alpha}$) of $100{\sim}120{\mu}g\;L^{-1}$ and one control tank including no fish with the same initial CHL-${\alpha}$. All tanks were maintained water quality of dissolved oxygen $(5.3{\sim}8.2mg\;L^{-1})$ and pH $(7.4{\sim}8.1)$ in the tests. During the biomanipulation, DO and pH in the treatments were lower than those of the control, while conductivity increased gradually in the treatments. Biomanipulation experiments showed that CHL-${\alpha}$ increased 13% and 0% (mean values of 8 fishes) in the controls and treatments, respectively. These results indicate that algal growth was maintained in the control and fish treatments, but the rate of CHL-${\alpha}$ in the treatments was lower than that of the control. The removal rates of bluegreens algae decreased 32% in the control, and 20% in treatments (mean values of 8 fishes) respectively, In other words, bluegreen algae showed greater growth rate in the fish treatments than the control and this was due to higher nutrients supplied from fish excretions. Overall, simple fish biomanipulation on algal control was not effective at all in these laboratory tests.

Variations in Ammonium Removal Rate with Tidal State in the Macrotidal Han River Estuary: Potential Role of Nitrification (한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할)

  • Hyun, Jung-Ho;Chung, Kyung-Ho;Park, Yong-Chul;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to understand the importance of tidal action and $NH_4{^+}$ -nitrification in the removal of dissolved oxygen (DO) and $NH_4{^+}$, concentrations of DO, $NH_4{^+}$, $NO_2{^-}$ and $NO_3{^-}$ were measured with time for water samples collected at different tidal state in the eutrophic macrotidal Han River estuary. Field measurements indicated that most environmental parameters, except for the water temperature and DO concentration, were tightly controlled by the eutrophic freshwater runoff and large-scale tidal action. Dark incubation of the water sample at $25^{\circ}C$ showed that the removal rates of DO and $NH_4{^+}$ in high tide sample were 2.76 ${\mu}M\;O_2\;d^{-1}$ and 1.76 ${\mu}M\;N\;d^{-1}$ respectively, and increased to 5.66 ${\mu}M\;O_2\;d^{-1}$ and 3.36 ${\mu}M\;N\;d^{-1}$ respectively, in low tide sample. These changes indicated that microbial degradation and uptake of organic matter and inorganic nutrients were more active during low tide. $NH_4{^+}$-nitrification responsible for total DO removal in low tide (23.81%) and $NH_4{^+}$ turnover rates due to $NH_4{^+}$-nitrification in low tide (0.18 $d^{-1}$) were approximately 3.7 times and 3 times, respectively, higher than those in high tide. These results indicated that $NH_4{^+}$ -nitrifying bacteria introduced into the Han River estuary during low tide played a significant role in the removal of DO and $NH_4{^+}$. The decreasing removal rates in DO and $NH_4{^+}$ with the increasing tidal level seemed to be associated with the salinity impact on the halophobic freshwater $NH_4{^+}$-nitrifying bacteria. The results implied that anthropogenic $NH_4{^+}$ sources should be treated prior to the freshwater runoff into the estuary for the effective control of $NH_4{^+}$ in the Han River estuary. These results also suggest that parallel ecological studies on the chemoautotrophic nitrifying bacteria are essential for the elucidation of nitrogen cycles in the eutrophic Han River estuary.

  • PDF

Evaluation of Nutrients Removal using Pyrolyzed Oyster Shells (소성온도에 따른 굴 패각의 영양염 제거 성능 평가)

  • Jeong, Ilwon;Woo, Hee-eun;Lee, In-Cheol;Kim, Jinsoo;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.906-913
    • /
    • 2019
  • To evaluate the removal performance of PO4-P and NH3-N, laboratory experiments were conducted by filling a container with oyster shells, pyrolyzed at 100℃ (POS100), 600℃ (POS600) and 800℃ (POS800), and passing artificial wastewaters through the container. The pH in the ef luent was found to increase due to CaO eluted from oyster shell. Removal amounts of PO4-P of ~23.1 mg/kg, 16.1 mg/kg, and 15.9 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used; therefore, the highest PO4-P removal amount was obtained when POS100 was used. It is considered that Ca and dolomite in the oyster shells adsorbed and precipitated PO4-P. Removal amounts of NH3-N were of ~3.56 mg/kg, 5.72 mg/kg, and 3.97 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used The low removal rate for NH3-N is probably due to unstable nitrification, use of sealed containers, and the effect of NH3-N being converted to NH4+ upon increasing pH. Based on these results, pyrolyzed oyster shell is expected to promote changes in PO4-P and NH3-N concentrations through chemical reactions. These results can also be used for basic research in the development of wastewater treatment.

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

The Application of Aluminum Coagulant for the Improvement of Water Quality in Three Recreational Ponds (알루미늄 응집제를 사용한 호수수질 개선 사례 연구)

  • Kang, Phil-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.447-454
    • /
    • 2003
  • Aluminum coagulant was applied to two eutrophic lakes (Lake Sukchon, in Seoul, and a pond on the campus of Kangwon National University), to precipitate suspended particles and phosphate from the water column. Aluminum sulfate (alum) was used for seven treatments and polyaluminum chloride (PAC) was used for one treatment. The effect of treatment varied depending on the dose of alumium coagulant. Particles and phosphate were completely precipitated from the water column with a dose of 10.0 mgAl/l. Partial removal was observed at doses of 3.3 and 1.8 mgAl/l, but not at 0.45 mgAl/l. Therefore, coagulant should be applied at a dose over the threshold in order to remove particles effectively, which seems to be between 1.8 and 10.0 mgAl/l. The length of treatment effect was determined by new inputs of nutrients and particles from external sources. Renewal of pond water by stream water caused recovery of algal growth in Lake Sukchon, and rainfall runoff and ground water pumping caused a return of turbid water in the campus pond. During treatment there was no sign of decreasing pH, or harmful effects on fish or mussels. Aluminum coagulant may be an economically feasible alternative for water quality improvement when the external control of pollutant sources is difficult. However, repeated application is required when there is a renewal of lake water or new input of nutrients.