• 제목/요약/키워드: Nutrient use efficiency

검색결과 107건 처리시간 0.022초

육상식물 중심의 영양소 순환 경로와 부식과정에 의한 양성 되먹임과정, 그리고 영양소 이용효율 (Alternative Nutrient Cycles for Terrestrial Plants, Positive Feedbacks through Detrital Processes, and Nutrient Use Efficiency)

  • Lee, Dowon;Thomas P. Burns
    • The Korean Journal of Ecology
    • /
    • 제16권1호
    • /
    • pp.115-131
    • /
    • 1993
  • Six nutrient cycles involving terrestrial plants are identified and characterized. Plants affect biotic and abiotic cycles through their effects on soil properties. They determine their internal nutritional status and nutrient concentrations in their environment via internal and external cycles. Contributions of organic matter to mycorrhizal, trophic, and detrital mediated external cycles and alterations of nutrient concentrations by plants can promote positive feedbacks leading to increased availability and retention of soil nutrients in open systems. Recognizing alternative cycles through plants leads to a definition of nutrient use efficiency for ecosystems: the ratio of system production to nutrient content of organic matter. A simple graph model to predict changes of nutrient use efficiency during primary succession is then presented.

  • PDF

Water/nutrient use efficiency and effect of fertigation: a review

  • Woojin Kim;Yejin Lee;Taek-Keun Oh;Jwakyung Sung
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.919-926
    • /
    • 2022
  • Fertigation, which has been introduced in agricultural fields since 1990, has been widely practiced in upland fields as well as in plastic film houses as part of the crop production system. In accordance with demands in the agricultural sector, a huge number of scientific studies on fertigation have been conducted worldwide. Moreover, with a combination of advanced technologies such as big-data, machine learning, etc., fertigation is positioned as an indispensable tool to achieve sustainable crop production and to enhance nutrient and water use efficiency. In this review, we focused on providing valuable information in terms of crop production and nutrient/water use efficiency. A variety of fertigation studies have described that enhancement of crop production did not differ relative to conventional method or slightly increased. In contrast, fertigation significantly improved nutrient/water use efficiency, with a reduction in use ranging from 20 to 50%. Water-soluble organic resources such as livestock manure and agricultural byproducts also have been identified as useful resources like chemical fertilizers. Furthermore, the initial irrigation point was generally recommended in a range of -10 - -40 kPa, although the point differed according to the crop and crop growth stage. From this review, we suggest that fertigation, which is closely integrated with advanced technology, could be a leading technology to attain not only food security but also carbon neutrality via improvement of nutrient/water use efficiency.

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF

질소와 인 시비가 소나무, 일본잎갈나무, 자작나무 묘목의 양분이용효율에 미치는 영향 (Effect of N and P Fertilization on Nutrient Use Efficiency of Pinus densiflora, Larix leptolepis, and Betula platyphylla var. japonica Seedlings)

  • 신정아;손요환;홍성각;김영걸
    • 한국환경농학회지
    • /
    • 제18권4호
    • /
    • pp.304-309
    • /
    • 1999
  • 소나무, 일본잎갈나무, 자작나무 묘목을 대상으로 온실 내에서 질소와 인 비료를 사용하고, 묘목 생체량, 잎, 줄기, 뿌리 등의 부위별 양분 농도, 그리고 양분이용효율에 미치는 영향을 연구하였다. 대부분의 경우 시비가 묘목의 생체량 변화에 미치는 효과는 없는 것으로 나타났다. 그러나 시비 후 묘목 내 부위별 질소와 인 농도는 증가하였다. 이러한 결과는 시비가 묘목을 양분 과다 이용상태에 이르게 한 것으로 사료되었다. 양분이용효율은 지상부와 지하부 생체량에 대한 묘목 내 양분 함량의 비로 계산하였는데, 시비 후 질소와 인의 이용효율은 소나무와 자작나무에서 감소하였으나, 일본 잎갈나무에서는 변화를 보이지 않았다. 수종별 양분이용효율은 자작나무에서 가장 높고, 소나무와 일본잎갈나무의 순으로 점차 감소하는 것으로 나타났다.

  • PDF

Combined Effects of Container Volume and Fertilizer Level on Plant Growth, Physiological Characteristics, and Nutrient Uptake of Vinca Plant (Catharanthus roseus)

  • Kang, Jong-Goo;Chon, Sang-Uk
    • 한국작물학회지
    • /
    • 제55권3호
    • /
    • pp.268-274
    • /
    • 2010
  • The aim of our study was to investigate the interactive effects of container size and nutrient supply on plant growth, chlorophyll synthesis, transpiration, $CO_2$ assimilation, water use efficiency (WUE), and nutrient uptake of vinca plant (Catharanthus roseus). A complete experiment utilizing four concentrations of fertilizer and three volumes of containers was conducted. As the container size was increased, the plant height, leaf area, and dry weight of vinca significantly increased regardless of fertilizer level. The leaf area and dry weight of vinca were highly sensitive to the container size. However, the chlorophyll contents of vinca 20 days after the transplant significantly increased with decreasing container sizes and increasing fertilizer concentrations. Significant differences in transpiration and $CO_2$ assimilation occurred with the use of differentfertilizer solutions, but the highest values for transpiration and $CO_2$ assimilation were in plants grown in the 15 cm-diameter containers. The highest water use efficiency was observed in the plants grown in 10 cm-containers with 4 dS/m of fertilizer, and there were no significant differences in WUE values among container sizes with fertilizer concentrations of 0, 1, or 2 dS/m. No significant difference in nutrient uptake was observed among the fertilizer levels or among the container sizes. However, at a fertilizer concentration of 4 dS/m, the uptake of several nutrients, including N, P, K, Ca, Mg, B and Fe, was higher in small containers than in larger ones.

유박의 줄뿌림 시비가 옥수수 생육 및 양분이용효율에 미치는 영향 (Effect of Oil Cake Banding Application on Growth and Nutrient Use Efficiency in Maize)

  • 옥정훈;조정래;이병모;안난희;신재훈;이연
    • 한국유기농업학회지
    • /
    • 제24권4호
    • /
    • pp.907-917
    • /
    • 2016
  • 본 연구에서는 양분 유실이 많고 이용효율이 낮은 유박 전면시비에서 유박 줄뿌림으로 시비방법을 개선하였을 때 유박의 처리 깊이, 위치, 투입량에 따른 옥수수 생육 변화와 양분이용효율 변화를 2년간 조사하였다. 옥수수 생육조사결과, 유박 전면시비와 비교하여 유박 줄뿌림 처리구가 초장, SPAD값, 줄기와 알곡의 건물중 등에서 전반적으로 좋은 생육을 보였으며, 특히 유박 줄뿌림 처리구중에서도 깊이를 5 cm로 옥수수 근권에 줄뿌림 시비하는 것이 가장 효과적인 것으로 나타났다. 양분이용효율 측면에서도 유박 줄뿌림 처리구에서 높은 효율을 보였으며 유박을 옥수수 근권에 줄뿌림 시비로 개선하여 처리한다면 추비시 투입량을 1/2로 줄여도 옥수수 알곡에서 양분이용효율은 감소하지 않는 것으로 나타났다. 유박 근권 줄뿌림 시비방법은 유박의 투입량도 기준방법과 비교하여 25% 줄일 수 있고 양분이용 측면에서 효과적인 방법으로 판단된다.

리기다소나무와 낙엽송조림지(落葉松造林地)의 지상부(地上部) 양분분포(養分分布) 특성(特性) (Aboveground Nutrient Distribution in Pitch Pine (Pinus rigida) and Japanese Larch (Larix leptolepis) Plantations)

  • 김춘식
    • 한국산림과학회지
    • /
    • 제88권2호
    • /
    • pp.266-272
    • /
    • 1999
  • 경기도 광릉의 중부임업시험장내 31년생 리기다소나무와 낙엽송조림지를 대상으로 임분별 3개의 $20{\times}10m$ 조사구를 선정하고 각 조사구로부터 1본씩 표본목을 선정한 후 벌도하여 지상부 현존량을 측정하고 각 부위별 양분분포를 조사하였다. 조사된 임분의 지상부 현존량은 리기다소나무의 경우 170.2ton/ha, 낙엽송은 87.2ton/ha로서 리기다소나무 임분이 낙엽송 임분에 비해 높게 나타났으며, 두 임분의 현존량의 차이는 임분 밀도의 차가 원인인 것으로 나타났다. 각 부위별 현존량 분배율은 줄기>가지>수피>잎 순이었으며, 각 부위별 조직내 양분농도는 낙엽송이 리기다소나무에 비해 높았고, 두 임분 모두 잎>가지>수피>줄기 순으로 양분농도에 차이가 있었다. 양분 축적량은 리기다소나무 임분이 질소 335.9kg/ha, 칼슘 188.6kg/ha, 칼륨 121.4kg/ha, 마그네슘 93.8kg/ha, 인산 40.4kg/ha 순이었으며 낙엽송 임분은 질소 225kg/ha, 칼슘 75.7kg/ha, 칼륨 72.9kg/ha, 마그네슘 37.1kg/ha, 인산 11.5kg/ha으로 리기다소나무 임분에서 양분 축적량이 높게 나타났다. 양분에 대한 지상부 현존량의 비로 표시되는 양분이용효율중 질소이용효율은 낙엽송 임분이 리기다소나무 임분에 비해 낮게 나타났으며 이는 리기다소나무가 낙엽송에 비해 척박지에서 더 잘 견딜 수 있는 임목의 특성을 반영하고 있다.

  • PDF

유기자재 시용이 벼의 생육과 질소이용효율에 미치는 영향 (Effect of Organic Materials on Growth and Nitrogen Use Efficiency of Rice in Paddy)

  • 조정래;최현석;이연;이상민;정석규
    • 한국유기농업학회지
    • /
    • 제20권2호
    • /
    • pp.211-220
    • /
    • 2012
  • 탄질비가 다른 유기자재를 시용하여 벼를 유기재배 할 때 자재별 무기화 정도와 벼의 질소 이용효율을 조사하기 위해서 2009년부터 2011년까지 시험을 수행하였다. 유기자재 처리는 질소함량 90kg/ha 수준으로 가축분퇴비, 유박, 유박2배, 헤어리베치, 헤어리베치+호밀 처리구를 두었고 화학비료구와 대조구를 두었다. 유기자재 중 유박은 가장 낮은 탄소:질소비(탄질비)를 나타내었고 가축분퇴비가 가장 높은 탄질비를 보였다. 토양 pH, 탄소, 질소, 칼슘, 그리고 마그네슘 농도는 처리간에 차이가 관찰되지 않았다. 2009년과 2010년의 질소 이용효율은 유박처리구가 화학비료구와 헤어리베치 그리고 퇴비구보다 높았다. 강수량이 많았던 2011년에는 축분퇴비구가 질소이용효율이 높은 것으로 관찰되었다.

Fertilizer Use Efficiency of Taro (Colocasia esculenta Schott) and Nutrient Composition of Taro Tuber by NPK Fertilization

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.388-392
    • /
    • 2016
  • The objectives of fertilizer recommendation are to prevent the application of excessive fertilization and to produce target yields. Also, optimal fertilization is important because crop quality can be influenced by fertilization. In this study, yields and fertilizer use efficiency of Taro (Colocasia esculenta Schott) were evaluated in different level of NPK fertilization. N, P and K fertilizer application rates were 5 levels (0, 50, 100, 150, 200%) by practical fertilization ($N-P_2O_5-K_2O=180-100-150kg\;ha^{-1}$), respectively. In the N treatment, the yields of Taro tuber were about $33Mg\;ha^{-1}$ from 90 to $360kg\;ha^{-1}$ N fertilization. However, the ratio of tuber to total biomass decreased with increasing N fertilization rate. In the P and K treatments, yields of Taro tuber were the highest at $150kg\;ha^{-1}$ fertilization. Fertilizer use efficiency was decreased by increase of N and K fertilization. Crude protein of Taro tuber was the highest at practical fertilization. Sucrose content of tuber was influenced by phosphate application.

Bio-fermentation Technology to Improve Efficiency of Swine Nutrition

  • Kim, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권6호
    • /
    • pp.825-832
    • /
    • 2010
  • The United Nations Convention on Biological Diversity defines biotechnology as "Any technological application that uses biological systems, dead organisms, or derivatives thereof, to make or modify products or processes for specific use" Biotechnology has made tremendous contributions to improve production efficiency of agriculture during the last century. This article reviews successful examples of application of bio-fermentation in improving swine nutrition efficiency mainly based on the authors'z own research experience. Production of feed grade supplemental amino acids by bio-fermentation allowed nutritionists to formulate accurate feed for optimal lean growth and reduced nitrogen excretion. Recent issues with high feed grain prices caused potential feed quality problems. Bio-fermentation allowed nutritionists to use exogenous supplemental enzymes such as phytase and NSPases in swine diets, thereby improving nutrient utilization and reducing nutrient excretion to the environment. Yeast metabolites are also produced by bio-fermentation and have been repeatedly shown to improve milk production of sows during early lactation even though actual mechanisms are still to be investigated. Bio-fermentation technology also allowed nutritionists to prepare vegetable protein sources with large protein molecules and anti-nutritional factors suitable for feeding newly weaned piglets, as selected microorganisms significantly reduce specific anti-nutritional factors and size of peptides. Preparations of vegetable protein sources suitable for newly weaned pigs will greatly contribute to swine nutrition by providing efficient alternatives to the use of animal protein sources that are often expensive and somewhat against societal preference. Considering the few examples listed above, biotechnology has closely influenced improvement of production efficiency in the swine industry. As we have limited resources to produce meat to satisfy ever-increasing global demands, extensive adaptation of biotechnology to enhance production efficiency should be continued. However, at the same time, wise and careful application of bio-technology should be considered to ensure production of safe food and to meet the expectations of our society.