Effect of Organic Materials on Growth and Nitrogen Use Efficiency of Rice in Paddy

유기자재 시용이 벼의 생육과 질소이용효율에 미치는 영향

  • 조정래 (국립농업과학원 유기농업과) ;
  • 최현석 (국립농업과학원 유기농업과) ;
  • 이연 (국립농업과학원 유기농업과) ;
  • 이상민 (국립농업과학원 유기농업과) ;
  • 정석규 (경희대학교 한방재료가공학과)
  • Received : 2012.04.24
  • Accepted : 2012.06.24
  • Published : 2012.06.30

Abstract

This study was conducted to evaluate soil nutrient concentrations and N uptake efficiency of paddy rice as affected by nutrient sources from 2009 to 2011. The treatments included chemical fertilizer, compost, oilcake, oilcake 2X, hairy vetch, vetch+rye, and control. Nutrient applications were made at rates equivalent to approximately 90 kg of actual N per hectare. Oilcake had the lowest C:N ratio from the raw materials, but compost had the highest C:N ratio of 34:1. Soil pH and concentrations of C, N, Ca, and Mg were unaffected by nutrient source treatments. N uptake efficiency was the greatest for oilcake-treated rice compared to those treated by NPK, hairy vetch, and compost in 2009 and 2010. Composttreated rice had the greatest N uptake efficiency in 2011 when the high amount of precipitation occurred.

탄질비가 다른 유기자재를 시용하여 벼를 유기재배 할 때 자재별 무기화 정도와 벼의 질소 이용효율을 조사하기 위해서 2009년부터 2011년까지 시험을 수행하였다. 유기자재 처리는 질소함량 90kg/ha 수준으로 가축분퇴비, 유박, 유박2배, 헤어리베치, 헤어리베치+호밀 처리구를 두었고 화학비료구와 대조구를 두었다. 유기자재 중 유박은 가장 낮은 탄소:질소비(탄질비)를 나타내었고 가축분퇴비가 가장 높은 탄질비를 보였다. 토양 pH, 탄소, 질소, 칼슘, 그리고 마그네슘 농도는 처리간에 차이가 관찰되지 않았다. 2009년과 2010년의 질소 이용효율은 유박처리구가 화학비료구와 헤어리베치 그리고 퇴비구보다 높았다. 강수량이 많았던 2011년에는 축분퇴비구가 질소이용효율이 높은 것으로 관찰되었다.

Keywords

References

  1. 농촌진흥청. 2003. 농업과학기술 연구조사분석기준. 문성사, 농촌진흥청, 수원, 한국. pp.1-838.
  2. Cha, K. H., H. J. Oh, R. D. Park, H. G. Park, K. N. An, and W. J. Jung. 2010. Comparison of growth, yield and quality between organic cultivation and conventional cultivation in rice (Oryza sativa L.) field. Kor. J. Organic Agric. 18: 199-208.
  3. Cho, J. L., Y. Lee, H. S. Choi, and W. S. Kim. 2011. The effects of organic materials on yield and N use efficiency of organic rice grown under frequent heavy rains. Kor. J. Environ. Agric. 30: 138-143. https://doi.org/10.5338/KJEA.2011.30.2.138
  4. Gale, E. S., D. M. Sullivan, C. G. Cogger, A. I. Bary, D. D. Hemphill, and E. A. Myhre. 2006. Estimation plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 35: 2321-2332. https://doi.org/10.2134/jeq2006.0062
  5. Jeon, W. T., C. Y. Park, Y. S. Cho, K. D. Park, E. S, Yun, U. G. Kang, S. T. Park, and Z. R. Choe. 2003. Spatial distribution of rice root under long-term chemical and manure fertilization in paddy. Kor. J. Crop Sci. 48: 484-489.
  6. Kang, S. W., C. H. Yoo, C. H. Yang, and S. S. Han. 2002. Effects of rapeseed cake application at panicle initiation stage on rice yield and N-use efficiency in machine transplanting cultivation. Kor. J. Soil Sci. Fert. 35: 272-279.
  7. Kim, H. H., J. Y. Lee, and K. S. Park. 1998. Effects of fermented cattle manure compost incorporated autoclaved lightweight concrete (ALC) waste and raising duck in rice paddy field on rice yield and quality. Kor. J. Environ. Agric. 17: 54-58.
  8. KMA (Korea Meteorological Administration). 2011. Weather data, Seoul, Korea.
  9. Lee, S. M., I. S. Ryu, C. S. Lee, Y. H. Park, and M. H. Um. 1999. Determination of application rate of composted pig manure for wetland rice. Kor. J. Soil Sci. Fert. 32: 182-191.
  10. Yeon, B. Y., H. K. Kwak, Y. S. Song, H. J. Jun, H. J. Cho, and C. H. Kim. 2007. Changes in rice yield and soil organic matter content under continued application of rice straw compost for 50 years in paddy soil. Kor. J. Soil Sci. Fert. 40: 454-459.