• Title/Summary/Keyword: Nutrient solution.

Search Result 767, Processing Time 0.033 seconds

Nutrient Absorption by Citrus unshiu Marc. Grown in Out-Door Solution Culture (양액재배에서 감귤나무의 무기양분 흡수)

  • Anh, Nguyen Than;Kang, Tae-Woo;Song, Sung-Jun;Park, Won-Pyo;Nong, Nguyen Ngoc;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.225-232
    • /
    • 2003
  • Nutrients and water absorption by Citrus unshiu Marc. cv. Miyagawa Wase were examined using spray type of out-door hydroponics system. Three different concentration levels of nutrient solution were treated to citrus trees to examine nutrient uptake. To do so, concentration and the volume change of nutrient solution was measured for each treatment. By weighing the volume of solution and citrus trees, amounts of water uptake and fresh weight increase were observed periodically. Water uptake by trees increased as tree grew and time elapsed, but was lower at high level of nutrient concentration than the rest, due partly to the reduction in hydraulic conductance and to the sustained high salt concentration. Rapid increase in fresh weight and nutrient uptake occurred from May to July and from August to September. The amounts of nutrient uptake were significantly different among nutrient levels: the higher concentration, the greater uptake by citrus tree. The absorbed amounts of $NO_3$, K and Ca were much higher than those of $NH_4$, S, P, Mg, and Fe. Most mineral contents in leaves were proportional to the concentration of supplied nutrient solutions. From the results of nutrient absorption and contents in leaves at different levels of nutrient solutions, the composition of major elements for citrus nutrient solution can be modified as follows: 27.1, 16.5, 66.0, 80.0, and $24.0mg\;L^{-1}$ for N, P, K, Ca, and Mg, respectively.

Growth, Nutrient Status and Net Photosynthetic Rate of Pinus densiflora Seedlings in Various Levels of Aluminum Concentrations (알루미늄 농도(濃度)에 따른 소나무 묘목(苗木)의 생장(生長), 영양상태(營養狀態) 및 광합성속도(光合成速度)에 미치는 영향(影響))

  • Lee, Choong Hwa;Jin, Hyun O;Izuta, Takeshi
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.249-254
    • /
    • 1999
  • The effects of various levels of Al concentration on growth, nutrient status and net photosynthetic rate of 2-year-old Pinus densiflora Sieb. et Zucc. seedlings grown in a nutrient culture solution were investigated. Al concentrations were added as aluminum chloride($AlCl_3$) at 0(control), 10, 30 and 60ppm to the nutrient culture solution. The nutrient culture solution was maintained at pH 4.0 by adding HCl or NaOH solution. The seedlings were transplanted into the nutrient culture solution and grown in a greenhouse for 90 days from May 8 to August 6, 1996. The treatment above 10ppm of Al concentrations induced a significant reduction on the dry weight growth of the seedlings. The relative growth rate(RGR), net assimilation rate(NAR) and net photosynthetic rate of the seedlings were reduced with increasing of Al concentrations in the nutrient culture solutions. This result suggests that reductions in the RGR and NAR of the seedlings were mainly due to the inhibition of net photosynthesis. In addition, the increase of Al concentrations in a nutrient culture solution decreased the concentration of essential mineral elements such as Ca and Mg in the needle of the seedlings. However, the concentrations of Al of each plant organ increased in the treatment above 10ppm of Al concentrations in the nutrient culture solutions. This result suggests that the increased Al concentration in the belowground part resulted from the decreased concentration of essential mineral elements in the aboveground part of the seedlings.

  • PDF

Development of A Computer Simulation Program of Emitter Discharges for Trickle Application (점적 급액 방식에서의 양액 공급량 예측 프로그램의 개발)

  • 오길근;류관희;홍순호
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.390-396
    • /
    • 1995
  • This study was conducted to develop a computer simulation program for trickle application of nutrient solution. A computer simulation program using finite element method was developed to evaluate discharges of emitters on trickle application. The uniformity of application for two different lateral line lengths and three application methods was evaluated by the computer simulation program. The results of this study are as follows. 1. A computer simulation program was developed to determine emitter discharges from a trickle application system and pressures at emitter positions by finite element method and to design a uniform trickle application system. 2. The simulation program developed was verified by experiment. The root mean square error between experimental data and simulated data was 1.1% on the average discharge and it was found that the computer simulation program was an effective tool for the design of a trickle application system of nutrient solution. 3. The uniformity of trickle application system was evaluated for three different methods of supplying nutrient solution with different lateral line lengths. The best uniformity was obtained from the method, which supplies nutrient solution from both ends alternatively for the same period of time.

  • PDF

Development of a Low-cost Metering Device for Automatic Mixing of Nutrient-Solution

  • Ryu, K.H.;Lee, K.C.;Lee, J.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1117-1125
    • /
    • 1996
  • A low-cost and precise metering device, which is suitable to automatic mixing of nutrient-solution for hydroponic culture, was developed for small-scale growers. The metering accuracy of the metering device developed was compared with commercial metering pumps. The mixing performance through the control of EC and pH was also evaluated. The accuracy of the metering device in terms of the full -scale error was $\pm$0.3% , which was much better compared to $\pm$2.45% and $\pm$1.38% for the two types of commercial metering pumps. The mixing system of nutrient-solution with the metering device showed a satisfactory control performance with the accuracies of $\pm$0.05mS/cm and$\pm$0.2pH for EC and pH, respectively.

  • PDF

A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water (지하수를 이용한 양액냉각시스템 개발에 관한 기초연구)

  • 남상운;손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

Effects of Compost Leachate and Concentrated Slurry on the Growth and Yield of Tomato(Lycopersicum esculentum Mill.) in Hydroponic Culture (퇴비단 여과액비와 농축액비를 이용한 양액재배가 토마토(Lycopersicum esculentum Mill.)의 생육 및 수량에 미치는 영향)

  • Ryoo, Jong-Won;Seo, Woon-Kab
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.3
    • /
    • pp.357-370
    • /
    • 2009
  • This experiment was conducted to investigate the effects of compost leachate and concentrated slurry on growth of tomato in hydroponic culture. In process of composting, compost leachate was produced water was through a saturated compost heap. The concentrated slurry was produced by filtration and concentration by membrane process. Filtration of pig slurry was necessary to prevent the hose clogging in hydroponics culture. The treatments of this experiment were consisted of seven different liquid fertilizers; compost leachate(CL), concentrated pig slurry (CS), compost leachate+byproduct(CL+BP), concentrated pig slurry+byproduct(CS+BP), compost leachate 50%+nutrient solution50%(CL+NS), concentrated pig slurry 50%+nutrient solution50%(CS+NS) and nutrient solution(NS) for tomato based on nitrogen content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of tomato. The concentration of nutrient solution was adjusted a range of $1.6{\sim}2.0 mS/cm$ in EC. 1. The compost leachate and concentrated pig slurry were low in phosphorus(P), calcium(Ca), magnesium(Mg), but rich in potassium(K). 2. Plant height, SPAD value of tomato was highest in the plot of CS+NS, intermediate in CL, CS+BP, and lowest in 100% concentrated pig slurry. 3. The tomato yield of compost leachate plot was 91% compared with inorganic nutrient solution. The compost leachate solution could be used as a nutrition solution of tomato in organic hydroponics. 4. The growth including plant height, SPAD value, fruit number, fruit weight and yield of tomato in the CL 50%+NS 50% was similar in the control. In conclusion, the mixture solution of 50% pig slurry and 50% nutrient solution could be used as a nutrition solution of tomato hydroponic culture.

  • PDF

Effect of Mineral Nutrient Control on Nutrient Uptake, Growth and Yield of Single-Node Cutting Rose Grown in a Closed Hydroponic System (순환식 수경재배시 무기이온 조절이 Single-Node Cutting 장미의 양분흡수, 생육 및 품질에 미치는 영향)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.252-260
    • /
    • 2008
  • This study was conducted to observe the characteristics of mineral nutrient uptake of single-node cutting rose 'Versilla' and to determine optimal nutrient solution control method for soilless culture of 'Versilla' in a closed hydroponic system. Nutrient solution was managed by five different control methods: macro- and micro-element control in aeroponic system (M&M), macroelement control in aeroponic system (M), nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system(EC-A); EC control in deep flow technique system(EC-D). The concentration of $NO_3$-N exceeds optimal range whereas P and Mg decreased at the later stage of plant growth with the EC control method, EC-A and EC-D. The overall mineral nutrient content increased with S. On the other hand the nutrient content at the root environment was maintained optimal with M&M and M. The nutrient solution control methods had significantly effect on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with the other mineral nutrients control methods. The maximal efficiency of photochemistry (Fv/Fm) was higher for M&M, M and S than that with EC-A and EC-D. Based on the above results, it is highly recommended to control nutrient solution by mineral nutrient control methods (M&M and M) in a closed hydroponic system for single-node cutting rose, 'Versillia'.

Effect of Nutrient Solution Concentration on Growth, Yield and Fruit Quality of Fig Plant (Ficus carica L.) (배양액의 농도가 무화과(Ficus carica L.)의 생육, 수량 및 과실의 품질에 미치는 영향)

  • Jun Ha-Joon;Hwang Jin-Gyu;Son Mi-Ja;Kim Min;Kim Jeong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.264-269
    • /
    • 2006
  • This experiment has investigated the effect of growth, yield and fruit quality of fig plant by different concentration of nutrient solution. Nutrient solution for pig plant were three concentrations of the balanced nutrient formula development by Japanese Horticultural Experiment Station. Plant height, number of leaves, stem diameter and number of fruit per plant were the best at 1/2 concentration. However, leaf length and leaf width did not show any difference in other treatment. Fruit length, fruit diameter and soluble solids did not differ from the different concentration of nutrient solutions. However, the fruit weight of fig plant was heavier by hydroponics than by soil culture in 2nd experiment. Early stage growth of fig plant was better at low concentration of nutrient solution and yield was better at high concentration. The result of this experiment will be utilized in the new application for fig plant hydroponics.

Development of Nutrient Solution Cooling System in Hydroponic Greenhouse (수경재배 온실의 양액냉각시스템 개발)

  • 남상운;김문기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.113-121
    • /
    • 1994
  • Since it is difficult to expect the normal production of plants in greenhouses during hot summer season in Korea, certain provisions on the control of extreme environmental factors in summer should be considered for the year-round cultivation in greenhouses. This study was carried out to find a method to suppress the temperature rising of nutrient solution by cooling, which is able to contribute to the improvement of the plant growth environment in hydroponic greenhouse during hot summer season. A mechanical cooling system using the counter flow type with double pipe was developed for cooling the nutrient solution efficiently. Also the heat transfer characteristics of the system was analysed experimentally and theoretically, and compared with the existing cooling systems of nutrient solution. The cooling capacities of three different Systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipe, were evaluated. The performance of each cooling system was about 41 %, 70% and 81 % of design cooling load in hydroponic greenhouse of 1 ,000m$^2$ on the conditions that the flow rate of ground water was 2m$^3$/hr and the temperature difference between two liquids was 10 ˚C According to the results analysed as above, the cooling system was found to have a satisfactory cooling capability for regions where ground water supply is available. Fer the other regions where ground water supply is restricted, more efficient cooling System should be developed.

  • PDF

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.