• Title/Summary/Keyword: Nutrient medium

Search Result 491, Processing Time 0.028 seconds

Classification and Spatial Variability Assessment of Selected Soil Properties along a Toposequence of an Agricultural Landscape in Nigeria

  • Fawole Olakunle Ayofe;Ojetade Julius Olayinka;Muda Sikiru Adekoya;Amusan Alani Adeagbo
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.180-194
    • /
    • 2023
  • This study characterize, classify and evaluates the function of topography on spatial variability of some selected soil properties to assist in designing land management that support uniform agricultural production. The study site, an agricultural land, was part of the derived savanna zone in southwest Nigeria. Four soil profile pits each were established along two delineated toposequence and described following the FAO/UNESCO guidelines. Samples were collected from the identified genetic horizons. Properties of four soil series developed on different positions of the two delineated Toposequence viz upper, middle, lower slopes and valley bottom positions respectively were studied. The soil samples were analysed for selected physical and chemical properties and data generated were subjected to descriptive and inferential statistics. The results showed that soil colour, depth and texture varied in response to changes in slope position and drainage condition. The sand content ranged from 61 to 90% while the bulk density ranged between 1.06 g cm-3 to 1.68 g cm-3. The soils were neutral to very strongly acid with low total exchangeable bases. Available phosphorus value were low while the extractable micronutrient concentration varied from low to medium. Soils of Asejire and Iwo series mapped in the study area were classified as Typic isohyperthermic paleustult, Apomu series as Plinthic isohyperthermic paleustult and Jago series as Aquic psamment (USDA Soil Taxonomy). These soils were correlated as Lixisol, Plinthic Lixisol and Fluvisol (World Reference Based), respectively. Major agronomic constraints of the soils associations mapped in the study area were nutrient availability, nutrient retention, slope, drainage, texture, high bulk density and shallow depth. The study concluded that the soils were not homogenous, shows moderate spatial variation across the slope, had varying potentials for sustainable agricultural practices, and thus, the agronomic constraints should be carefully addressed and managed for precision agriculture.

Poly(3-hydroxybutyrate) Degradation by Bacillus infantis sp. Isolated from Soil and Identification of phaZ and bdhA Expressing PHB Depolymerase

  • Yubin Jeon;HyeJi Jin;Youjung Kong;Haeng-Geun Cha;Byung Wook Lee;Kyungjae Yu;Byongson Yi;Hee Taek Kim;Jeong Chan Joo;Yung-Hun Yang;Jongbok Lee;Sang-Kyu Jung;See-Hyoung Park;Kyungmoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1076-1083
    • /
    • 2023
  • Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new Bacillus infantis species with PHB-degrading ability were isolated from the soil. In addition, phaZ and bdhA of all isolated B. infantis were confirmed using a Bacillus sp. universal primer set and established polymerase chain reaction conditions. To evaluate the effective PHB degradation ability under nutrient-deficient conditions, PHB film degradation was performed in mineral medium, resulting in a PHB degradation rate of 98.71% for B. infantis PD3, which was confirmed in 5 d. Physical changes in the degraded PHB films were analyzed. The decrease in molecular weight due to biodegradation was confirmed using gel permeation chromatography and surface erosion of the PHB film was observed using scanning electron microscopy. To the best of our knowledge, this is the first study on B. infantis showing its excellent PHB degradation ability and is expected to contribute to PHB commercialization and industrial composting.

Effect of Planting Density, Growing Medium and Nutrient Solution Strength on Growth and Development of Lily in Box Culture (나리의 상자재배시 재식밀도, 배지 및 양액농도가 생육에 미치는 영향)

  • Chae, Soo Cheon
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2008
  • This purpose of this study was to examine the effect of planting density, growing medium and strength of a nutrient solution (National Horticultural Research Institute's nutrient solution: HRI's) on the growth and development of Oriental hybrid lily 'Le Reve' in a box cultivation. The planting density with 14, 18 and 22 bulbs had sprouting one day earlier than other treatments. Planting density of 22 bulbs flowered first, while six bulbs flowered the last, indicating that higher planting densities led earlier flowering. The increasing planting density increased stem length of cut flowers. On the other hand, cut flower quality was improved when the planting density was lower. The incidence of physiological disorders such as blasting was more frequent in planting density of 22, 18, and 14, indicating that higher planting densities caused higher incidences of physiological disorders. All planting densities except 22 bulbs displayed superior results in width, weight, number, and scale weight of the bulbs. Greater planting densities led to inferior bulb enlargement and an increased decomposition rate. pH decreased in all treatments after the bulb enlargement and decreased more as the planting density increased. Contents of P, K, Ca, and Mg increased, while contents of K and Ca decreased, as the planting density increased. The rice hull+coir (1:1, v/v) treatment was better than others, but did not show that much of a difference. Moreover, in bulbs enlargement after cut flower harvest, lily medium and perlite+peat moss treatments showed superior results, and decomposition rate was the greatest in the rice hull+coir (1:1, v/v) treatment. In the HRI's solution strength treatment from the period of flower bud emergence to flower harvest, higher solution strengths gave better cut flower quality in terns of length, weight, and number of flowers. The non-treated control and one third strength of a HRI's solution hastened flowering, indicating that lower strengths led to earlier flowering. According to the results of leaf analysis as affected by solution strength during the flower harvest, absorption rates of N and K were greater when the strength was higher, and Ca and Mg showed the same tendency. On the other hand, the absorption rate of P was the lowest in all treatments.

Effects of Substrates and Irrigation Methods on the Plant Growth and Fruit Yield of Hydroponically Grown Cucumber Plants (배지의 종류와 급액방법이 양액재배 오이의 생장과 수량에 미치는 영향)

  • 이범선;박순기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.151-158
    • /
    • 1998
  • This study was carried out to evaluate the effect of substrates and nutrient solution supplying methods in the media culture using perlite and its mixtures with rice hull, carbonized rice hull. cocopeat on the growth and fruit qualify of hydroponically grown cucumber. Three substrates. Perlite(70%) +rice hull(30%) perlite(70%) +carbonized rice hull(30%) and perlite(70%)+cocopeat(30%) were compared with perlite medium. Supplying methods of nutrient solution were composed of drip irrigation, modified drip irrigation(covered with cheesecloth between drip hose and substrate) and mist system Leaf area of cucumber Plants was lowest in perlite medium while it was highest in mixture of perlite and cocopeat. NAR was higher in the plot of mixture with cocopeat. and same trend was observed in LAI and CGR. T/R ratio was higher in Perlite and perlite mixture with rice hull. Fruit Yields increased in the plot of modified drip irrigation system. When perlite mixture with rice hull used as a substrate. mist system was recommended. Perlite mixture with carbonized rice hull was observed favored in conventional drip irrigation system. Marketable yield and the number of fruit per plant increased and the malformed fruit decreased in the plot of modified drip irrigation system with the mixtures of Perlite and cocopeat.

  • PDF

Effects of Fertilization Methods on the Growth and Physiological Characteristics of $Larix$ $kaempferi$ Seedlings in the Container Nursery System (시비처리 방법에 따른 낙엽송 용기묘의 생장 및 생리 특성)

  • Cho, Min-Seok;Lee, Soo-Won;Park, Byung-Bae
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate chemical properties of the growth medium, growth performance, chlorophyll fluorescence, and chlorophyll contents of larch ($Larix$ $kaempferi$) growing under three different fertilization treatments (Constant rate, Three stage rate, and Exponential rate fertilization). Root collar diameter and height of larch were not significantly different among treatments even though the nutrient supply of the exponential treatment was half that of the constant and three stage treatments. Chemical properties of the growth medium showed the same trends as root collar diameter and height. The total biomass and seedling quality index (SQI) were higher at Constant than at other treatments, but both SQI of Constant and Exponential were not significantly different. Photochemical efficiency and chlorophyll contents were lower at Exponential than at other treatments, but not significantly different among treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

Isolation of Phytase Producing Pseudomonas fragi and Optimization of its Phytase Production (Acid Phytase를 생산하는 Pseudomonas fragi의 분리와 phytase의 생산조건)

  • Kim, Young-Jin;Jang, Eun-Seok;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • A bacterial strain producing a high level of an extracellular phytase was isolated from livestock waste water, identified as a strain of Pseudomonas fragi and designated as Pseudomonas fragi Y9451. Under the phytase production medium, the activity of phytase reached the highest level after 120 hours of incubation. On the effect of carbon sources on the phytase production, the most favorable carbon source for phytase production was fructose. As for the effect of nitrogen sources, high levels of phytase activity were detected in the medium containing nutrient broth as the nitrogen source. Free $PO_4^{3-}$ inhibited phytase production with increasing concentration of $KE_2PO_4$ and phytate in the media. The addition of $CaCl_2$ and $MgSO_4$ also resulted in the inhibition of phytase production. To investigate the effect of aeration on the phytase production, different volumes of culture broth in Erlenmeyer flasks were incubated in rotary shaker at the speed of 200 rpm. As a result, a high level of phytase activity was detected at small volume of culture broth as compared to larger volume because of its more aerobic condition.

Solid Cultivation of Fibrinolytic Enzyme (Bacillokinase) from Bacilis subtilis BK-17 (Bacillus subtilis BK-17 유래 혈전용해효소(Bacillokinase)의 고체배양)

  • Jeong, Yong-Kee;Beak, Hyun;Seo, Min-Jeong;Kim, Min-Jeong;Lee, Hye-Hyeon;Joo, Woo-Hong;Kim, Jeong-In;Choi, Yung-Hyun;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1478-1483
    • /
    • 2009
  • A solid-state culture based on grain materials was attempted to produce a fibrinolytic enzyme for blood circulation improvement using Bacillus subtilis BK-17. The spore, rather than vegetative cell inoculation, of B. subtilis BK-17 on the solid-state culture was effective in the production of a fibrinolytic enzyme. Maximum spore production was obtained with a SFM medium (0.8% nutrient broth, 0.05% yeast extract, $10^{-1}$ M $MgCl_2$, $10^{-3}$ M $FeCl_3$, $10^{-4}$ $MnCl_2$, $10^{-5}$ M dipicolic acid, pH 6.5). Optimal pH and temperature were pH 6 and $30^{\circ}C$, respectively. The spore production reached a maximum at 60 hours of incubation. Bacillus subtilis BK-17 on the mung bean solid-state culture produced greater fibrinolytic activity, and less activity was seen in other grains such as kidney bean, soybean and corn. Protein and lipid contents of fermented soybeans were about 10 - 30% more than those of unfermented soybeans. Amino acid content was also 5 - 20% more than that of unfermented soybeans. These results indicated that fermented solid-state culture medium, fermented soybean in this case, can be utilized as a food supplement.

Studies on Cultural Characteristics Pestalotiopsis theae causing Leaf Blight on Oriental Persimmon Tree (단감나무 둥근갈색무뉘병원균 Pestalotiopsis theae의 배양적 특성)

  • Chang, Tae-Hyun;Lim, Tae-Heon;Chung, Bong-Koo;Kim, Byung-Sup
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.232-238
    • /
    • 1997
  • Culture conditions affecting mycelial growth and sporulation of P. theae, SP2, SP3 and P. longiseta which causing leaf blight on oriental persimmon leaf blight have been investigated. The optimum temperature for the mycelial growth and sporulation on potato dextrose agar was $25{\sim}30^{\circ}C$ in all the fungi, but was inhibited and finally arrested at 10 and $30^{\circ}C$. The optimum pH for mycelial growth and sporulation were ranged at pH 4.5~5.0 and 5.0~6.0 in all the fungi. Lenonian agar, potato sucrose agar and oatmeal medium were good culture media for the mycelial growth and sporulation of all the fungi. The effective sources of nitrogen and carbon for the mycelial growth were tryptone, glycine, starch, dextrose, galactose and lactose. Glutamic acid, peptone and tryptone were good nitrogen sources for sporulation of the fungi. Sucrose, starch and galactose were also good carbon sources for sporulation. Generally, vitamins had no effect on mycelial growth and sporulation. The pH of the potato dextrose broth inoculated with SP2, SP3 and P. theae and P. longiseta was changed from 7.0 to 4.5~4.7 and 5.0~5.4 after incubating for 10 days, respectively. But, the initial pH of the medium adjusted to 5.0 was lowered to 4.5~4.7 after incubating for 10 days.

  • PDF

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium. (다기능 PGPR균주 Bacillus licheniformis K11이 생산하는 항진균성 Siderophore의 정제와 특성)

  • Woo, Sang-Min;Woo, Jae-Uk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 2007
  • Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.

Study on the Lettuce Growth Using Different Water Sources in a Hydroponic System (수경재배용 용수 종류에 따른 상추 생장 연구)

  • Heo, Jeong Min;Kim, Ga Eun;Kim, Jin Hwang;Choi, Byeongwook;Lee, Sungjong;Lee, Byungsun;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.191-198
    • /
    • 2022
  • BACKGROUND: Plants can be grown using a culture medium without soil using a hydroponic system. Crop production by the hydroponic system is likely to increase as a means of solving various problems in the agricultural sector such as aging of rural population and climate change. Different water sources can be used to prepare the culture medium used in the hydroponic system. Therefore, it is necessary to study the effect of different water sources on crop production by the hydroponic system in order to explore the applicability of various water resources. METHODS AND RESULTS: Lettuce was cultivated by the hydroponic system and three different water sources [tap water (TW), bottled water (BW), and groundwater (GW)] were used to compare the effect of water sources on lettuce growth. The three kinds of waters with a nutrient solution (TW-M, BW-M, GW-M) were also used as the media. After the six-week growth period, the lettuce length and weight, the number of leaves, and the contents of chlorophylls and polyphenols were compared among the different media used. The lettuces did not grow in the waters without the nutrient solution. In the media, the lettuce growth and the contents of chlorophylls were affected by the different water sources used to prepare the media, while the contents of polyphenols were not affected. The absorbed amounts of ions by lettuces, especially Ca and Zn ions, and the dry weight of the harvested lettuces showed a strong positive correlation. CONCLUSION(S): Overall, this study shows that different water sources used for growing lettuce in a hydroponic system can affect lettuce growth. Further studies on the enhancement of crop qualities using different water sources may be required in future studies.