• Title/Summary/Keyword: Nutrient component

Search Result 195, Processing Time 0.03 seconds

Quality Characteristics of Beverage Adding Onion Peel Extract (양파껍질 추출물 함유 음료의 품질특성)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.11-19
    • /
    • 2022
  • This study provided basic data for the commercialization of healthy functional beverages by examining the physicochemical characteristics, nutrient content, and microbiological safety of onion peel beverage. The total acid of onion peel beverage was 0.12 mg/g and the pH was 6.07. According to the storage period, the total acid decreased and the pH increased in all temperature ranges(25℃, 35℃, and 45℃). After 30 days of storage, it showed 0.06 mg/g in all temperature sections and maintained the pH 7 range. The total phenol content, which is a nutritional component of onion peel beverage, was 0.93 mg/g, flavonoid content was 0.25 mg/g, and quercetin content was 0.17 mg/g. The flavonoid content decreased according to the storage period, and in the case of storage temperature of 25℃, it contained 50% content up to 120 days of storage, but in the case of 35℃ and 45℃, it had a flavonoid content up to 90 days and 30 days, respectively. In the case of quercetin, a residual rate of about 50% was shown for 150 days of storage at 25℃ and 35℃. In the case of 45℃, it decreased to 35% at 30 days of storage. On the other hand, onion peel beverage maintained a viable cell count of less than 5 CFU/mL for 150 days of storage, and no coliform group was detected. As a result of analyzing the quality characteristics of onion peel beverage according to storage period, quality stability was confirmed in physicochemical characteristics and microbiological safety. Research on changes in biological activity according to low-temperature distribution or storage period is necessary.

Incorporating concepts of biodiversity into modern aquaculture: macroalgal species richness enhances bioremediation efficiency in a lumpfish hatchery

  • Knoop, Jessica;Barrento, Sara;Lewis, Robert;Walter, Bettina;Griffin, John N.
    • ALGAE
    • /
    • v.37 no.3
    • /
    • pp.213-226
    • /
    • 2022
  • Aquaculture is one of the fastest growing food producing sectors; however, intensive farming techniques of finfish have raised environmental concerns, especially through the release of excessive nutrients into surrounding waters. Biodiversity has been widely shown to enhance ecosystem functions and services, but there has been limited testing or application of this key ecological relationship in aquaculture. This study tested the applicability of the biodiversity-function relationship to integrated multi-trophic aquaculture (IMTA), asking whether species richness can enhance the efficiency of macroalgal bioremediation of wastewater from finfish aquaculture. Five macroalgal species (Chondrus crispus, Fucus serratus, Palmaria palmata, Porphyra dioica, and Ulva sp.) were cultivated in mono- and polyculture in water originating from a lumpfish (Cyclopterus lumpus) hatchery. Total seaweed biomass production, specific growth rates (SGR), and the removal of ammonium (NH4+), total oxidised nitrogen (TON), and phosphate (PO43-) from the wastewater were measured. Species richness increased total seaweed biomass production by 11% above the average component monoculture, driven by an increase in up to 5% in SGR of fast-growing macroalgal species in polycultures. Macroalgal species richness further enhanced ammonium uptake by 25%, and TON uptake by nearly 10%. Phosphate uptake was not improved by increased species richness. The increased uptake of NH4+ and TON with increased macroalgal species richness suggests the complementary use of different nitrogen forms (NH4+ vs. TON) in macroalgal polycultures. The results demonstrate enhanced bioremediation efficiency by increased macroalgal species richness and show the potential of integrating biodiversity-function research to improve aquaculture sustainability.

Fabrication of an ultra-fine ginsenoside particle atomizer for drug delivery through respiratory tract (호흡기를 통한 약액 전달을 위한 진세노사이드 초미세입자 분무장치 제작)

  • Byung Chul Lee;Jin Soo Park;Woong Mo Yang
    • Journal of Convergence Korean Medicine
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Objectives: The purpose of this study is to fabricate an ultra-fine ginsenoside particle atomizer that can provide a new treatment method by delivering ginsenoside components that have a therapeutic effect on respiratory diseases directly to the lungs. Methods: We fabricated the AAO vibrating mesh by using the micromachining process. The starting substrate of an AAO wafer has a 350nm pore diameter with 50㎛ thickness. A photomask having several 5㎛ opening holes with a 100㎛ pitch was used to separate each nanopore nozzle. The photoresist structure was optimized to pattern the nozzle area during the lift-off process precisely. The commercial vibrating mesh was removed from OMRON's NE-U100 product, and the fabricated AAO vibrating mesh was installed. A diluted sample of 20mL with 30% red ginseng concentrate was prepared to atomize from the device. Results: As a result of liquid chromatography analysis before spraying the ginsenoside solution, ginsenoside components such as 20S-Rg3, 20R-Rg3, and Rg5 were detected. After spraying through the AAO vibrating mesh, ginsenosides of the same component could be detected. Conclusion: A nutrient solution containing ginsenosides was successfully sprayed through the AAO vibrating mesh with 350 nm selective pores. In particular, during the atomizing experiment of ginsenoside drug solution having excellent efficacy in respiratory diseases, it was confirmed that atomizing through the AAO vibrating mesh while maintaining most of the active ingredients was carried out.

Evaluation of nutritional adequacy after investigating amino acid and mineral content in pet food distributed in South Korea

  • Ju-Hyeon Choi;Eunhee Chang;Hyung-Ju Seo;Yeong Gil Lee;Jihyun Kim;Guk-Tak Han;Seung Hwa Lee;Tae Woong Na
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.79-86
    • /
    • 2024
  • Among the nutrients in feed, amino acids and minerals are important for the growth and development of pets. In particular, interest in nutritional components related to the health of pets is increasing as pet-raising households and pet food markets have recently grown. Therefore, in this study, 55 pet food products distributed in South Korea were purchased, and the content of 3 essential and conditionally essential amino acids (taurine, lysine, arginine) and 4 minerals (Ca, P, Na, K) was investigated. Among the three amino acids, arginine was found to have the highest content, and the average content was 1.79 and 1.37 % in cat and dog foods, respectively. On the other hand, the taurine content was the lowest, but it was found to be higher than the minimum requirement of 0.10 % for cats set by the American Association for Feed Control (AAFCO) and the European Federation of Pet Food Industries (FEDIAF). As a result of the four-component analysis of minerals, the content of Ca was found to be the highest, and the average content was confirmed to be 1.64 and 1.25 % in cat and dog food, respectively. On the other hand, Na was the lowest, but it was higher than the AAFCO minimum requirement and FEDIAF minimum requirement for young cat and dog food. Among all 55 samples examined, the content of the three amino acids and the four inorganic components was confirmed to be suitable for the recommended minimum intake and maximum allowable intake presented by AAFCO and FEDIAF.

Comparative nutritional analysis for protopanaxadiol-enhanced genetically modified rice and its non-transgenic counterpart

  • Na Yeon Kim;Sung Dug Oh;Soo Yun Park;An Cheol Chang;Seong Kon Lee;Ye Jin Jang;So-Hyeon Baek;Yong Eui Choi;Jong-Chan Park;Doh Won Yun
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.239-249
    • /
    • 2024
  • In the assessment of the biosafety of genetically modified (GM) crops, a comparative approach to identifying similarities and differences between transgenic and non-transgenic crops is helpful in identifying potential safety and nutritional issues. In this study, we aimed to compare the nutritional composition of a protopanaxadiol-enhanced genetically modified rice (PPD GM rice) with its non-transgenic counterpart. The nutritional profile of PPD GM rice was assessed against that of the parental rice cultivar 'Dongjin' to ascertain nutritional equivalence. No differences were observed between PPD GM and Non-GM rice cultivar in proximate analysis, mineral content, and amino acid composition. Although significant differences were observed in crude fat, crude protein, total dietary fiber, and some minerals between PPD GM rice and Dongjin, these variances fell within the range suggested by common cultivars (Anmi and Nipponbare) and Organization for Economic Cooperation and Development (OECD) data. Similarly, while some amino acids showed significant differences, these metabolites did not deviate from the OECD range. Principal component analysis (PCA) was conducted using the nutritional analysis data of PPD GM rice and Dongjin. The results revealed that PPD GM rice and Dongjin were grouped according to their respective cultivation years. This suggests that the variability in the nutritional composition of PPD GM rice tends to resemble that of the parental rice cultivar 'Dongjin' rather than being solely attributed to genetic modification. Overall, our findings indicate that the nutritional composition of PPD GM rice is substantially equivalent to that of its non-transgenic counterpart.

Prevalence of Hypertension and Related Risk Factors of the Older Residents in Andong Rural Area (안동 농촌지역 중년 및 노인 주민의 고혈압 유병율과 위험요인 분석)

  • Lee, Hye-Sang;Kwun, In-Sook;Kwon, Chong-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.852-861
    • /
    • 2009
  • This study was performed to assess the risk factors associated with hypertension from Jan/2003 to Feb/2003. The subjects were 1,296 people (496 males, 800 females) aged 40 years and over living in Andong rural area. The hypertensive group was composed of 602 people (272 males, 330 females), who were diagnosed as hypertension ($SBP{\geq}140\;mmHg$ or $DBP{\geq}90\;mmHg$) for the first time at this health examination. The mean anthropometric values of body weight, body fat (%), body mass index (BMI) and waist circumference were significantly higher in hypertensive group than those in normal group. However, the biochemical measurements such as total-cholesterol (TC), triglyceride (TG), HDL-C, LDL-C and fasting blood glucose (FBG) levels did not show any difference between two groups except TG in female. The risk factors of interest in the development of hypertension were analyzed using the multiple logistic regression and expressed as odds ratio (OR) and 95% confidential interval (CI). The results showed that age, sex, obesity, waist circumference, alcohol drinking and meat intakes were risk factors for hypertension. In contrast, cigarette smoking, exercise and the increased fish, fruit and vegetable (except Kimchi) consumption, blood lipid levels and FBG were not linked with the development of hypertension. Nutrient intakes were not associated with hypertension, either. In conclusion, we cannot assert that this study established the existence of the cause-and-effect relationship between nutrient intakes and risk of hypertension in the subjects, but it does suggest that this is a question worth investigating further using a larger scale of case-control study to determine how the past exposure to some nutrient or dietary component relates to the development of the disease.

A Study on the Marine Biological and Chemical Environments in Yeosu Expo Site, Korea (여수 엑스포 해역의 생물.화학적 해양환경 특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Park, Jong-Sick;An, Yeong-Kyu;Yoon, Yang-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In order to understand the biological environmental characteristics with temporal variations of the physico-chemical factors in 2012 Yeosu Expo site of Korea, we investigated at one station, once per week, from April 2006 to December 2007. The surface water temperature ranged from 6.8 to $27.8^{\circ}C$ and the bottom water temperature ranged from 6.3 to 25.9 $25.9^{\circ}C$. The salinity varied from 12.8 to 33.0 psu in the surface water and from 25.2 to 33.6 psu in the bottom water. A strong halocline was observed between the surface and bottom layers in the summer when a rapid decrease of salinity coincided with heavy rainfall. The DIN concentration ranged from 1.36 to $82.7{\mu}M$ in the surface water and from 0.82 to $25.2{\mu}M$ in the bottom water. Phosphate concentration varied from 0.06 to $2.13{\mu}M$ in the surface water and from 0.07 to $1.38{\mu}M$ in the bottom water. Silicate was $1.68-52.0{\mu}M$ in the surface water and $1.37-30.7{\mu}M$ in the bottom water. The nutrient concentrations were generally high during heavy rainfalls and low water temperature periods, and considerably decreased in spring and autumn. The N/P ratio ranged from 4.43 to 325 in the surface water and from 3.8 to 321 in the bottom water. It increased rapidly during the heavy rainfall season and remained at a value of approximately 16 in other periods. The chlorophyll a concentration ranged from 0.46 to $65.0{\mu}g$ $L^{-1}$ in the surface water and from 0.71 to $15.0{\mu}g$ $L^{-1}$ in the bottom water. $Chl-{\alpha}$ concentration remained low in periods of low water temperature, however rapidly increased in periods of high water temperature. From the results of principal component analysis (PCA) and multiple regression analysis (MRA), we conclude that temporal variations of physico-chemical and biological factors were greatly affected by the influx of fresh water, and that nutrients were well controlled by their uptake and assimilation by phytoplankton. Also, during the low water temperature periods, environmental structure in this study site was affected by recycled nutrients through nutrient cycling and mineralization.

Effects of pH of soil medium on the growth and nutrient absorption of cultivated and native Chinese chives plants (토양배지의 pH가 재배 및 자생 부추류의 생육과 양분흡수에 미치는 영향)

  • Ku, Hyun-Hwoi;Lee, Sang Gak;Chiang, Mae-Hee;Choi, Jong-Lak;Lee, Sang-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • This experiment was conducted to investigate the effects of pH on the mineral nutrient uptake and growth of the four Chinese chives species. The Chinese chives species used in the experiment were the cultivated species grown in the farm (cultivated Allium tuberosum) and three wild species of wild Allium tuberosum, A. thunbergii and A. senescens. The pH levels of soil medium were set to be 4.5, 6.5, and 7.5. Fresh weight(FW) of cultivated A. tuberosum was highest at all pH levels. The increase of soil pH increased the FW of the wild A. tuberosum and A. thunbergii, but no difference was noted for the A. tuberosum and A. senescens. Plant height was higher in the order of wild A. tuberosum, A. thunbergii, and cultivated A. tuberosum and A. thunbergii. Notably plant height of the wild A. tuberosum increased significantly by the pH increase. The Zn content of the wild A. tuberosum was shown to be significantly higher than that of the other species and increased with the increase of soil pH. This indicates that there is a close relationship between the plant height and Zn content in Chinese chives plant. Principal component analysis for characterizing closely related A. species using the factors of plant growth and amounts of nutrients uptake showed that the cultivated A. and wild A. tuberosum were in the $4^{th}$ quadrant of the graph which are classified as the same species, while A. senescens and thunbergii was in $1^{st}$ and $3^{rd}$ quadrant indicating different species, respectively.

Evaluation of Water Quality Characteristics of Saemangeum Lake Using Statistical Analysis (통계분석을 이용한 새만금호의 수질특성 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.297-306
    • /
    • 2023
  • Saemangeum Lake is the largest artificial lake in Korea. The continuous deterioration of lake water quality necessitates the introduction of novel water quality management strategies. Therefore, this study aims to identify the spatiotemporal water quality characteristics of Saemangeum Lake using data from the National Water Quality Measurement Network and provide basic information for water quality management. In the water quality parameters of Saemangeum Lake, water temperature and total phosphorous content were correlated, and salt, total nitrogen content, pH, and chemical oxygen demand were significantly correlated. Other parameters showed a low correlation. The spatial principal component analysis of Saemangeum Lake showed the characteristics of its four zones. The mid-to-downstream section of the river affected by freshwater inflow showed a high nutrient salt concentration, and the deep-water section of the drainage gate and the lake affected by seawater showed a high salt concentration. Two types of water qualities were observed in the intermediate water area where river water and outer sea water were mixed: waters with relatively low salt and high chemical oxygen demand, and waters with relatively low salt and high pH concentration. In the principal component analysis by time, the water quality was divided into four groups based on the observation month. Group I occurred during May and June in late spring and early summer, Group II was in early spring (March-April) and late autumn (November-December), Group III was in winter (January-February), and Group IV was in summer (July-October) during high temperatures. The water quality characteristics of Saemangeum Lake were found to be affected by the inflow of the upper Mangyeong and Dongjin rivers, and the seawater through the Garuk and Shinshi gates installed in the Saemangeum Embankment. In order to achieve the target water quality of Saemangeum Lake, it is necessary to establish water quality management measures for Saemangeum Lake along with pollution source management measures in the upper basin.