Browse > Article
http://dx.doi.org/10.4490/algae.2022.37.5.12

Incorporating concepts of biodiversity into modern aquaculture: macroalgal species richness enhances bioremediation efficiency in a lumpfish hatchery  

Knoop, Jessica (Department of Biosciences, Swansea University)
Barrento, Sara (Department of Biosciences, Swansea University)
Lewis, Robert (Department of Biosciences, Swansea University)
Walter, Bettina (Department of Biosciences, Swansea University)
Griffin, John N. (Department of Biosciences, Swansea University)
Publication Information
ALGAE / v.37, no.3, 2022 , pp. 213-226 More about this Journal
Abstract
Aquaculture is one of the fastest growing food producing sectors; however, intensive farming techniques of finfish have raised environmental concerns, especially through the release of excessive nutrients into surrounding waters. Biodiversity has been widely shown to enhance ecosystem functions and services, but there has been limited testing or application of this key ecological relationship in aquaculture. This study tested the applicability of the biodiversity-function relationship to integrated multi-trophic aquaculture (IMTA), asking whether species richness can enhance the efficiency of macroalgal bioremediation of wastewater from finfish aquaculture. Five macroalgal species (Chondrus crispus, Fucus serratus, Palmaria palmata, Porphyra dioica, and Ulva sp.) were cultivated in mono- and polyculture in water originating from a lumpfish (Cyclopterus lumpus) hatchery. Total seaweed biomass production, specific growth rates (SGR), and the removal of ammonium (NH4+), total oxidised nitrogen (TON), and phosphate (PO43-) from the wastewater were measured. Species richness increased total seaweed biomass production by 11% above the average component monoculture, driven by an increase in up to 5% in SGR of fast-growing macroalgal species in polycultures. Macroalgal species richness further enhanced ammonium uptake by 25%, and TON uptake by nearly 10%. Phosphate uptake was not improved by increased species richness. The increased uptake of NH4+ and TON with increased macroalgal species richness suggests the complementary use of different nitrogen forms (NH4+ vs. TON) in macroalgal polycultures. The results demonstrate enhanced bioremediation efficiency by increased macroalgal species richness and show the potential of integrating biodiversity-function research to improve aquaculture sustainability.
Keywords
complementarity; growth; integrated multi-trophic aquaculture; nutrient uptake; seaweeds;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cardinale, B. J., Srivastava, D. S., Duffy, J. E., Wright, J. P., Downing, A. L., Sankaran, M. & Jouseau, C. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989-992.   DOI
2 Catarino, M. D., Silva, A. M. S. & Cardoso, S. M. 2018. Phycochemical constituents and biological activities of Fucus spp. Mar. Drugs 16:249.   DOI
3 Chopin, T. 2017. The renewed interest in the cultivation of seaweeds, as the inorganic extractive component of integrated multi-trophic aquaculture (IMTA) systems, and for the ecosystem services they provide. Bull. Aquac. Assoc. Can. 1:13-18.
4 Fortes, M. D. & Luning, K. 1980. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgol. Meeresunters. 34:15-29.   DOI
5 Fox, J. & Weisberg, S. 2019. An R companion to applied regression. 3rd ed. Sage, Thousand Oaks, CA, 802 pp.
6 Tilman, D. & Downing, J. A. 1994. Biodiversity and stability in grasslands. Nature 367:363-365.   DOI
7 Tilman, D., Lehman, C. L. & Thomson, K. T. 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. U. S. A. 94:1857-1861.   DOI
8 Tremblay-Gratton, A., Boussin, J. -C., Tamigneaux, E., Vandenberg, G. W. & Le Francois, N. R. 2018. Bioremediation efficiency of Palmaria palmata and Ulva lactuca for use in a fully recirculated cold-seawater naturalistic exhibit: effect of high NO3 and PO4 concentrations and temperature on growth and nutrient uptake. J. Appl. Phycol. 30:1295-1304.   DOI
9 Vahteri, P. & Vuorinen, I. 2016. Continued decline of the bladderwrack, Fucus vesiculosus, in the Archipelago Sea, northern Baltic proper. Boreal Envrion. Res. 27:373-386.
10 Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P. & Ward, B. 2013. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos. Trans. R. Soc. B Biol. Sci. 368:20130121.   DOI
11 Zhang, Q. -G. & Zhang, D. -Y. 2006. Resource availability and biodiversity effects on the productivity, temporal variability and resistance of experimental algal communities. Oikos 114:385-396.   DOI
12 Friedlander, M., Gonen, Y., Kashman, Y. & Beer, S. 1996. Gracilaria conferta and its epiphytes: 3. Allelopathic inhibition of the red seaweed by Ulva cf. lactuca. J. Appl. Phycol. 8:21-25.   DOI
13 Boyer, K. E., Kertesz, J. S. & Bruno, J. F. 2009. Biodiversity effects on productivity and stability of marine macroalgal communities: the role of environmental context. Oikos 118:1062-1072.   DOI
14 Barry, K. E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A. J., Bai, Y., Connolly, J., De Deyn, G. B., de Kroon, H., Isbell, F., Milcu, A., Roscher, C., Scherer-Lorenzen, M., Schmid, B. & Weigelt, A. 2019. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34:167-180.   DOI
15 Ben-Ari, T., Neori, A., Ben-Ezra, D., Shauli, L., Odintsov, V. & Shpigel, M. 2014. Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture 434:493-498.   DOI
16 Bergheim, A., Drengstig, A., Ulgenes, Y. & Fivelstad, S. 2009. Production of Atlantic salmon smolts in Europe: current characteristics and future trends. Aquac. Eng. 41:46-52.   DOI
17 Bracken, M. E. S. & Stachowicz, J. J. 2006. Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammoniun. Ecology 87:2397-2403.   DOI
18 Bregnballe, J. 2015. A guide to recirculation aquaculture: an introduction to the new envrionmentally friendly and highly productive closed fish farming systems. Food and Agriculture Organization of the United Nations, Rome, 95 pp.
19 Britto, D. T. & Kronzucker, H. J. 2002. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159:567-584.   DOI
20 Bruno, J. F., Boyer, K. E., Duffy, J. E., Lee, S. C. & Kertesz, J. S. 2005. Effects of macroalgal species identity and richness on primary production in benthic marine communities. Ecol. Lett. 8:1165-1174.   DOI
21 Cardinale, B. J. 2011. Biodiversity improves water quality through niche partitioning. Nature 472:86-89.   DOI
22 Patoczka, J. & Wilson, D. J. 1984. Kinetics of the desorption of ammonia from water by diffused aeration. Sep. Sci. Technol. 19:77-93.   DOI
23 Gamfeldt, L., Lefcheck, J. S., Byrnes, J. E. K., Cardinale, B. J., Duffy, J. E. & Griffin, J. N. 2015. Marine biodiversity and ecosystem functioning: what's known and what's next? Oikos 124:252-265.   DOI
24 Griffen, B. D. 2006. Detecting emergent effects of multiple predator species. Oecologia 148:702-709.   DOI
25 Nilsson, J., Engkvist, R. & Persson, L.-E. 2004. Long-term decline and recent recovery of Fucus populations along the rocky shores of southeast Sweden, Baltic Sea Aquat. Ecol. 38:587-598.   DOI
26 Pereira, R., Kraemer, G., Yarish, C. & Sousa-Pinto, I. 2008. Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions. Eur. J. Phycol. 43:107-118.   DOI
27 Powell, A., Treasurer, J. W., Pooley, C. L., Keay, A. J., Lloyd, R., Imsland, A. K. & De Leaniz, C. G. 2018. Use of lumpfish for sea-lice control in salmon farming: challenges and opportunities. Rev. Aquac. 10:683-702.   DOI
28 Roleda, M. Y. & Hurd, C. L. 2019. Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia 58:552-562.   DOI
29 Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G. & Semiao, A. J. C. 2018. Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: influence on growth, nitrogen preference and biochemical composition. Algal Res. 30:1-10.   DOI
30 Runcie, J. W., Ritchie, R. J. & Larkum, A. W. D. 2003. Uptake kinetics and assimilation of inorganic nitrogen by Catenella nipae and Ulva lactuca. Aquat. Bot. 76:155-174.   DOI
31 Corey, P., Kim, J. K., Duston, J. & Garbary, D. J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29:35-45.   DOI
32 Chopin, T., Yarish, C., Wilkes, R., Belyea, E., Lu, S. & Mathieson, A. 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J. Appl. Phycol. 11:463-472.   DOI
33 Collos, Y. & Harrison, P. J. 2014. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull. 80:8-23.   DOI
34 Copertino, M. D. S., Tormena, T. & Seeliger, U. 2009. Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Clorophyceae) cultivated in shrimp aquaculture waste water. J. Appl. Phycol. 21:31-45.   DOI
35 de Paula Silva, P. H., McBride, S., de Nys, R. & Paul, N. A. 2008. Integrating filamentous 'green tide' algae into tropical pond-based aquaculture. Aquaculture 284:74-80.   DOI
36 Edwards, P. 2015. Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447:2-14.   DOI
37 Stachowicz, J. J., Graham, M., Bracken, M. E. S. & Szoboszlai, A. I. 2008. Diversity enhances cover and stability of seaweed assemblages: the role of heterogeneity and time. Ecology 89:3008-3019.   DOI
38 Food and Agriculture Organization of the United Nations. 2020a. Fishery and Aquaculture Statistics (Global capture production 1950-2018) (FishStatJ). Food and Agriculture Organization of the United Nations, Rome.
39 Food and Agriculture Organization of the United Nations. 2020b. The state of world fisheries and aquaculture 2020: sustainability in action. Food and Agriculture Organization of the United Nations, Rome, 244 pp.
40 Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. 2017. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10:91-110.   DOI
41 Selman, M., Greenhalgh, S., Diaz, R. & Sugg, Z. 2008. Eutrophication and hypoxia in coastal areas: a global assessment of the state of knowledge. World Resources Institute, Washington, DC, 6 pp.
42 Sharp, G. J. 1987. Growth and production in wild and cultured stocks of Chondrus crispus. Hydrobiologia 151- 152:349-354.   DOI
43 Shpirt, E. 1981. Role of hydrodynamic factors in ammonia desorption by diffused aeration. Water Res. 15:739-743.   DOI
44 Stabili, L., Acquaviva, M. I., Angile, F., Cavallo, R. A., Cecere, E., Del Coco, L., Fanizzi, F. P., Gerardi, C., Narracci, M. & Petrocelli, A. 2019. Screening of Chaetomorpha linum lipidic extract as a new potential source of bioactive compounds. Mar. Drugs 17:313.   DOI
45 Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H. & Sousa-Pinto, I. 2011. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77-87.   DOI
46 Anderson, D. M., Glibert, P. M. & Burkholder, J. M. 2002. Harmful algal blooms and eutrophication: nutrient sources, compositions, and consequences. Estuaries 25:704-726.   DOI
47 Ashkenazi, D. Y., Israel, A. & Abelson, A. 2018. A novel twostage seaweed integrated multi-trophic aquaculture. Rev. Aquac. 11:246-262.   DOI
48 Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. 2010. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252-3260.   DOI
49 Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci. 15:633-640.   DOI
50 Carmona, R., Kraemer, G. P. & Yarish, C. 2006. Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish-algal aquaculture system. Aquaculture 252:54-65.   DOI
51 Goddek, S., Joyce, A., Kotzen, B. & Burnell, G. M. 2019. Aquaponics food production systems: combined aquaculture and hydroponic production technologies for the future. Springer, Cham, 619 pp.
52 Grasshoff, K., Ehrhardt, M. & Kremling, K. 1983. Methods of seawater analysis. Verlag Chemie, Weinheim, 419 pp.
53 Griffin, J. N., Mendez, V., Johnson, A. F., Jenkins, S. R. & Foggo, A. 2009. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118:37-44.   DOI
54 Hafting, J. T., Craigie, J. S., Stengel, D. B., Loureiro, R. R., Buschmann, A. H., Yarish, C., Edwards, M. D. & Critchley, A. T. 2015. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 51:821-837.   DOI
55 Hale, S. S., Cicchetti, G. & Deacutis, C. F. 2016. Eutrophication and hypoxia diminish ecosystem functions of benthic communities in a New England estuary. Front. Mar. Sci. 3:249.
56 Hanisak, M. D. & Harlin, M. M. 1978. Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). J. Phycol. 14:450-454.   DOI
57 Harrison, P. J. & Hurd, C. L. 2001. Nutrient physiology of seaweeds: application of concepts to aquaculture. Cah. Biol. Mar. 42:71-82.
58 Hurd, C. L., Harrison, P. J., Bischof, K. & Lobban, C. S. 2014. Seaweed ecology and physiology. 2nd ed. Cambridge University Press, Cambridge, 551 pp.
59 Knoop, J. 2019. Establishing the knowledge baseline for sustainable Porphyra cultivation in South Wales. Ph.D. dissertation. Swansea University, Swansea, UK.
60 O'Connor, M. I., Gonzalez, A., Byrnes, J. E. K., Cardinale, B. J., Duffy, J. E., Gamfeldt, L., Griffin, J. N., Hooper, D., Hungate, B. A., Paquette, A., Thompson, P. L., Dee, L. E. & Dolan, K. L. 2017. A general biodiversity-function relationship is mediated by trophic level. Oikos 126:18-31.   DOI
61 Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. 2019. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-139. R Core Team. R Foundation for Statistical Computing, Vienna, Austria.
62 Roleda, M. Y., van de Poll, W. H., Hanelt, D. & Wiencke, C. 2004. PAR and UVBR effects on photosynthesis, viability, growth and DNA in different life stages of two coexisting Gigartinales: implications for recruitment and zonation pattern. Mar. Ecol. Prog. Ser. 281:37-50.   DOI
63 Schmedes, P. S. 2020. Investigating hatchery and cultivation methods for improved cultivation of Palmaria palmata. Ph.D. dissertation. Danish Shellfish Centre, National Institute of Aquatic Resources, Nykobing, 150 pp.
64 Loreau, M. 1998. Separating sampling and other effects in biodiversity experiments. Oikos 82:600-602.   DOI
65 Lachnit, T., Blumel, M., Imhoff, J. F. & Wahl, M. 2009. Specific epibacterial communities on macroalgae: phylogeny matters more than habitat. Aquat. Biol. 5:181-186.   DOI
66 Lefcheck, J. S., Byrnes, J. E. K., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., Hensel, M. J. S., Hector, A., Cardinale, B. J. & Duffy, J. E. 2015. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6:6936.   DOI
67 Li, H., Zhang, Y., Chen, J., Zheng, X., Liu, F. & Jiao, N. 2019. Nitrogen uptake and assimilation preferences of the main green tide alga Ulva prolifera in the Yellow Sea, China. J. Appl. Phycol. 31:625-635.   DOI
68 Loreau, M. & Hector, A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72-76.   DOI
69 Macchiavello, J. & Bulboa, C. 2014. Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens. Lat. Am. J. Aquat. Res. 42:523-533.   DOI
70 Kraemer, G. P., Carmona, R., Chopin, T., Neefus, C., Tang, X. & Yarish, C. 2004. Evaluation of the bioremediatory potential of several species of the red alga Porphyra using short-term measurements of nitrogen uptake as a rapid bioassay. J. Appl. Phycol. 16:489-497.   DOI
71 Murray, F., Bostock, J. & Fletcher, D. 2014. Review of recirculation aquaculture system technologies and their commercial application. University of Stirling, Stirling, 75 pp.
72 Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368:734-737.   DOI