• Title/Summary/Keyword: Nutrient Solution

Search Result 773, Processing Time 0.028 seconds

Effect of Application Rate of a Slow-release Fertilizer in Three Media Containing Polyacrylic Acid Sodium Salt on Growth and Nutrient Contents of Potted Chrysanthemum 'Lima Honey' (Polyacrylic Acid Sodium Salt를 혼합한 세 종류 상토에 지효성 비료의 시비 수준이 포트-멈 'Lima Honey'의 생육과 무기원소 흡수에 미치는 영향)

  • Choi Jong-Myung;Wang Hyun-Jin
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 2006
  • Objective of this research was to determine the effect of application rate of a slow release fertilizer (SRF) in three root media, peatmoss+vermiculite (1:1, v/v; PV), peatmoss+composted rice hall (1:1, v/v; PR), and peatmoss+composted pine bark (1:1, v/v; PB), on growth and nutrient contents of potted chrysanthemum 'Lima Honey'. All media contained polyacrylic acid sodium salt at a rate of $4.5g L^{-1}$. The fresh and dry weights at 43 days after transplanting did not show statistical differences among treatments in each root media. Elevated application rate of SRF increased fresh and dry weights at 80 days after transplanting in PV and PB media, but not in PR medium. Elevated application rates of SRF resulted in the increase of tissue phosphorus content and decrease of tissue Ca, Na, and Zn contents at both 43 and 80 days after transplanting. Elevated application rates of SRF resulted in the decrease of pH and increase of EC and concentrations of ${NO_3}^-$ and ${P_2O_5}^{3-}$, K, Ca, and Mg in the soil solution of PV and PR media. The trends of those in PR media were also similar except ${NO_3}^-$. The differences among treatments in EC at 80 days after transplanting were less significant as compared to those at 43 days after transplanting in three media.

Increases in the Activities of Microsomal ATPases Prepared from the Roots of Lettuce Cultured in Salt-enhanced Nutrient Solutions (양액내 염류농도 증가에 의한 상추뿌리의 마이크로솜 ATPase 활성증가)

  • Lee, Gyeong-Ja;Kang, Bo-Koo;Kim, Young-Kee
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • In order to investigate the mechanism of growth inhibition by salt stress, lettuces were grown hydroponically in three different nutrient solutions, normal and 30 mM or 50 mM $KNO_3$-added nutrient solutions, and the electrical conductivities of these solutions were 1.0, 4.5, and 6.5 dS/m, respectively. The activities of plasma and vacuolar $H^+$-ATPases in the root tissue of lettuce were measured by specific inhibitors, 100 ${\mu}M$ vanadate and 50 mM $NO_3^-$, respectively. Microsomal ATPase activity of lettuce grown in the normal nutrient solution was $356\pm1.5$ nmol/min/mg protein. When lettuces were grown in 30 mM and 50 mM $KNO_3$-added nutrient solutions, total activities of microsomal ATPases were increased by 1.6 and 1.9 times, respectively, and the increases were mainly mediated by vacuolar $H^+$-ATPase. These results show that lettuces adapt themselves to salt-stressed condition by increasing the activities of $H^+$-ATPases. Effects of various heavy metal ions were investigated on the microsomal ATPases and various metal ions at 100 $\mu M$ inhibited the activities by 10$\sim$25%. $Cu^{2+}$ showed the highest inhibitory effect on the vacuolar $H^+$-ATPase. These results suggest that lettuce increases the activities of root ATPases, specially that of vacuolar $H^+$-ATPase, in salt-stressed growth conditions and $Cu^{2+}$ could be a useful tool to control the activity of vacuolar $H^+$-ATPase.

Rapid Nutrient Diagnosis of Cucumber by Test Strip and Chlorophyll Meter (Test Strip과 Chlorophyll Meter를 이용한 오이의 신속한 영양진단)

  • Kim, Kwon-Rae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.272-279
    • /
    • 2003
  • This study was performed to develop a more rapid and simple nutrient diagnosis method of plants than the conventional leaf analysis method. Cucumber (Cucumis sativus L. cv. jangil banbaek) was planted in the mixed media produced by mixing perlite and rock wool at 1:1 (v/v) ratio. The Yamazakki nutrient solution for cucumber was supplied to the media using micro-drip irrigation system. Experimental plots were consisted of no fertilization, deficient fertilization, adequate fertilization, and surplus fertilization for N, P and K. Specific color difference sensor value (SCDSV) measured by chlorophyll meter was closely related to total-N concentration in leaves measured by the conventional method. Nitrate, $PO_4$ and K concentration in petiole sap measured by test strips showed a significant relationship with total-N, P and K concentration in leaves. Linear regression equations between $NO_3$, $PO_4$ and K concentration in petiole sap and total-N, P and K concentration in the leaves were prepared. Optimum levels of $NO_{3}$, $PO_{4}$ and K in petiole sap were obtained by plugging the optimum concentrations of total-N, P and K in the leaves by other researchers into the equations. In conclusion, the SCDSV measured by chlorophyll meter and the concentration of $NO_3$, P and K in petiole sap measured by the test strips would be suitable for rapid estimation of plant nutrient status.

Effects of Nutrient Strength and Light Intensity on Nutrient Uptake and Growth of Young Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Seedling Stage (배양액의 농도와 광강도가 단일처리전 칼랑코에 유묘의 양분흡수와 생육에 미치는 영향)

  • Lu, Yin-Ji;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • It is very important to make shorter and healthier pot plants with increased numbers of branch at a growing stage before short-day exposure. Especially light and nutrient conditions directly affect the growth and quality of the plants as described above. In this study, the effects of nutrient strength and light intensity on the nutrient uptake and growth of young Kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') during this growth stage were investigated. The plants were grown under two radiation integral (15.8 and 7.9 $mol{\cdot}m^{-2}{\cdot}d^{-1}$, PPF) and three EC (0.8, 1.6 and 2.4 $dS{\cdot}m^{-1}$) conditions. Leaf area, fresh weight, dry weight and number of branch were higher at a higher PPF, and this tendency was more evident at an EC above 1.6$dS{\cdot}m^{-1}$. The plants became higher at a lower PPF. When the EC was at 0.8 $dS{\cdot}m^{-1}$, the plants did not grow so healthy regardless of PPF conditions. EC decrement in the nutrient solution was increased with increase of nutrient strength. With growth stage, the nutrient uptake was increased with increases of nutrient strength and PPF. At a higher PPF, $NO_3-N,\;K^{+}\;and\;Ca^{2+}$ were much more absorbed, and especially the uptake of $K^{+}$ was 1.1 to 1.5 times greater than that or $NO_3-N$. From the results, the EC needed above 1.6 $dS{\cdot}m^{-1}$ during the seedling stage in order to make more healthy Kalanchoe plants having more leaf area, fresh weight, dry weight and number of branches under adequate light conditions.

Comparison of the mental health, metabolic syndrome and nutrient intake by Gender in Problem drinkers ; Based on The Fifth(2010-2012) Korean National Health and Nutrition Examination Survey (성별에 따른 문제음주자의 정신건강, 대사증후군과 영양소 섭취; 제 5기(2010-2012) 국민건강 영양조사를 중심으로)

  • Choi, Young -Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5159-5168
    • /
    • 2014
  • The study examined the relationship among metal health, metabolic syndrome and nutrient acceptance according to gender. Implemented until 2010-2012, the 5th Korean National Health and Nutrition Examination Survey, as an original document, was used for the study. The target was problem drinkers with more than 12 points under AUDIT. Regarding mental health, it was classified into stress, depression and suicidal impulse. Metabolic syndrome was defined when three causes of BMI, waist circumference, FBS, HDL and BP were out of the normal range. The nutrient intake was obtained to confirm the energy intake of nine non-nutrients (Nutrient adequacy ratio: NAR) and the proper intake of the average non-nutrient (Mean adequacy ratio: MAR). These variables were analyzed by frequency, cross analysis and multiple regression analysis through SPSS18.0. In the general features, there was a significant difference according to age, occupation and marital status. In mental health, stress, depression and suicidal impulse were examined. Metabolic syndrome was dependant on FBS, HDL and BP. The nutrient acceptance depended on calcium, vitamin A, thiamine, riboflavin, niacin, vitamin C, and MAR. Logistic regression analysis performed on the variables showed significant differences. Stress, depression, and thoughts of suicide was significantly higher in men aged 19-29 years, and women aged 30-49 years. In the case of the male, those who employed have metabolic syndrome more than those who unemployed. In terms of female, those who were belonged into the middle - low economic level have undergone with metabolic syndrome. In the part of a Mean adequacy ratio(MAR), the male who unmarried, employed, were in the middle low economic levelwere higher. In the case of the female, it was higher for those who were in the middle - low economic level. Overall, an effective way of planning the solution regarding mental health, metabolic syndrome and nutrient intake can be found by considering these features.

Effects of an aqueous red pine (Pinus densiflora) needle extract on growth and physiological characteristics of soybean (Glycine max)

  • Hwang, Jeong-Sook;Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The effect of allelochemicals on growth, root nodule nitrogen fixation activity, and ion patterns of soybeans were investigated. We prepared 50 g/L (T50), 100 g/L (T100), and 200 g/L (T200) extract concentrations by soaking fresh red pine needles in a nutrient solution. Adding needles to the nutrient solution increased the content of total phenolic acids, osmolality, and total ions. The total phenolic content in the T50, T100, and T200 extracts were $206{\pm}12.61$, $335{\pm}24.16$, and $603{\pm}12.30$ mg gallic acid equivalents, respectively. The $K^+$, $Mg^{2+}$, $Ca^{2+}$, and $PO_4^{3-}$ content increased by adding needles to the nutrient solutions, whereas $SO_4^{2-}$ content decreased. The growth inhibition of soybeans was proportional to the needle extract concentrations, and the T100 and T200 concentrations resulted in remarkable growth inhibition. On day 20 after treatment, dry weight and nitrogen fixation activity of the root nodules were reduced by the T100 and T200 treatments, whereas the T50 treatment was not difference from the control. After day 10, total ion content in all treatment groups was not different in comparison with the control. However, total ionic content in all treatment groups decreased significantly compared with that in the control after day 20. The lowest total ion value was found for the T200 concentration. The T200 treatment also resulted in significantly reduced $SO_4^{2-}$ content. The amounts of $Mg^{2+}$, $Ca^{2+}$, and $Mn^{2+}$ were higher than those of the control for the T50 treatment on day 10 and for T100 on day 20 after treatment. A significant increase in osmolality was observed in the T200 treatment on day 10 and in the T100 treatment on day 20. These results suggest that under severe allelochemical stress conditions, a remarkable reduction in nodule formation, nitrogen fixation activity, and ion uptake eventually resulted in a decrease in leaf production. Furthermore, increased $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and osmolality in soybeans exposed to lower concentrations of allelochemicals than the critical stress level helped overcome the stress.

Effects of Bulb Size, Type of Media, Depth of Planting, and Nutrient Compositions on the Growth of Tissue Cultured Garlic Microbulbs in Hydroponic Culture (조직배양 마늘의 양액재배시 종구크기, 상토, 재식깊이 및 양액조성이 맹아 및 생육에 미치는 영향)

  • 최영일;선정훈;정경호;신성련;백기엽
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.137-142
    • /
    • 1999
  • This study was carried out to investigate the effects of bulb size, type of media, depth of planting, and nutrient compositions on sprouting and growth of tissue cultured garlic microbulbs in hydroponic culture. Early and increased sprouting were observed when the microbulbs were transplanted into soil planted in shallow (1 cm in depth), while bulb size and fresh weight of the whole plant increased in deep planting (3 cm in depth). Bulb size have greatly influenced on not only sprouting rate but also plant growth after planting. Large bulbs resulted in high growth rate such as number of leaves, stem width, plant height, and increase in bulb size after planting. It was shown that Oriental nutrient solution (N=0.17, P=0.45, K=1.29, Ca=2.44, and Mg=0.98 me/L) was more effective in sprouting and further growth of microbulbs as compared to Yamazaki solution (N=0.27, P=0.16, K=1.50, Ca=1.36 and Mg=0.78 me/L). Microbulbs grown in mixture of leaf mould + bark + sand or Baroko showed the most vigrous growth.

  • PDF

Antifungal effect of electrolyzed hydrogen water on Candida albicans biofilm (Candid albicans 바이오필름에 대한 전기분해 수소수의 항진균 효과)

  • Pyo, Kyung-Ryul;Yoo, Yun Seung;Baek, Dong-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • Purpose: Candida albicans can cause mucosal disease in many vulnerable patients. Also they are associated with denture-related stomatitis. Electrolyzed water is generated by electric current passed via water using various metal electrodes and has antimicrobial activity. The aim of this study was to investigate antifungal activity of electrolyzed water on C. albicans biofilm. Materials and Methods: C. albicans was cultured by sabouraud dextrose broth and F-12 nutrient medium in aerobic and 5% $CO_2$ condition to form blastoconidia (yeast) and hyphae type, respectively. For formation of C. albicans biofilm, C. albicans was cultivated on rough surface 6-well plate by using F-12 nutrient medium in $CO_2$ incubator for 48 hr. After electrolyzing tap water using various metal electrodes, the blastoconidia and hyphal type of C. albicans were treated with electrolyzed water. C. albicans formed blastoconidia and hyphae type when they were cultured by sabouraud dextrose broth and F-12 nutrient medium, respectively. Results: The electrolyzed water using palladium electrode (EWP) exhibited antifungal effect on blastoconidia of C. albicans. Also, the EWP significantly has antifungal activity against C. albicans biofilm and hyphae. In the electrolyzed water using various metal electrodes, only the EWP have antifungal activity. Conclusion: The EWP may use a gargle solution and a soaking solution for prevention of oral candidiasis and denture-related stomatitis due to antifungal activity.

Effects of Photoperiod, Light Intensity and Electrical Conductivity on the Growth and Yield of Quinoa (Chenopodium quinoa Willd.) in a Closed-type Plant Factory System

  • Austin, Jirapa;Jeon, Youn A;Cha, Mi-Kyung;Park, Sookuk;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.405-413
    • /
    • 2016
  • Quinoa (Chenopodium quinoa Willd.) is a plant native to the Andean region that has become increasing popular as a food source due to its high nutritional content. This study determined the optimal photoperiod, light intensity, and electrical conductivity (EC) of the nutrient solution for growth and yield of quinoa in a closed-type plant factory system. The photoperiod effects were first analyzed in a growth chamber using three different light cycles, 8/16, 14/10, and 16/8 hours (day/night). Further studies, performed in a closed-type plant factory system, evaluated nutrient solutions with EC (salinity) levels of 1.0, 2.0 or $3.0dS{\cdot}m^{-1}$. These experiments were assayed with two light intensities (120 and $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) under a 12/12 and 14/10 hours (day/night) photoperiod. The plants grown under the 16/8 hours photoperiod did not flower, suggesting that a long-day photoperiod delays flowering and that quinoa is a short-day plant. Under a 12/12 h photoperiod, the best shoot yield (both fresh and dry weights) was observed at an EC of $2.0dS{\cdot}m^{-1}$ and a photosynthetic photon flux density (PPFD) of $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. With a 14/10 h photoperiod, the shoot yield (both fresh and dry weights), plant height, leaf area, and light use efficiency were higher when grown with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Overall, the optimal conditions for producing quinoa as a leafy vegetable, in a closed-type plant factory system, were a 16/8 h (day/night) photoperiod with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Model for Ionic Species Estimation in Soil Solutio (토양용액의 이온조성 추정모델)

  • Kim, Yoo-Hak;Yoon, Jung-Hui;Jung, Beung-Gan;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.213-236
    • /
    • 2001
  • The ionic composition of soil solution is related to a nutrient uptake by plant. Many models for estimating ionic composition of solution have been developed, and most of them have been used for calculating a content of mineral and ionic species in a geochemical point of view. An approximation model considering both cation and anion in soil solution was developed. Variables such as pH, Eh, EC, cations(K, Ca, Mg. Na, Fe, Mn, Al, $NH_4{^+}$), anions(Si, S, P, CY, $NO_3{^-}$, $HCO_3{^-}$ and chemical equilibria of ionic species in soil solution were input into Excel sheet. The activities of soluble ion, ionpairs and complexes of input element were estimated by Newton-Raphson method using conditional equilibrium constant calculated by Davies equation and special models. Equilibrium contents of insoluble minerals and complexes were also calculated.

  • PDF