• Title/Summary/Keyword: Numerical towing tank

Search Result 68, Processing Time 0.027 seconds

HPMM Simulation in Numerical Towing Tank (수치수조에서의 평면운동시험 시뮬레이션)

  • Jung, Doo-Jin;Shin, Ki-Seok;Park, Sun-Ho;Heo, Jae-Kyung;Yu, Byeong-Suk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.74-78
    • /
    • 2007
  • In this paper, the HPMM(Horizontal Planar Motion Mechanism) test is simulated in a numerical towing tank by using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. The results of calculation are compared with those of static drift test or rotating arm test calculated by CFD to verify the results simulated by CFD. Through comparing pure sway test of HPMM test with static drift test and pure yaw test of HPMM with rotating arm test, it is found that HPMM test can be simulated in the numerical towing tank.

  • PDF

Numerical and Experimental Simulation of Directional Waves in Towing Tank (예인수조에서 방향스펙트럼파의 수치적 및 실험적 재현)

  • Y.K. Chung;J.H. Lee;H.H. Chun;D.D. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.1-9
    • /
    • 2001
  • Based on the linear potential theory with the side wall reflection. the directional spectrum waves are numerically simulated by a source distribution method and these together with long-crested irregular waves are also generated at the towing tank of Pusan National University by considering the transfer function of the wave maker obtained from the regular waves. In the numerical simulation, the characteristics of the directional spreading function are investigated by changing the breadth of the wave-maker unit. the width of the towing tank and the wave period. In the experimental generation, the statistical properties and the power spectrums of the long-crested irregular and directional waves are compared along the towing tank length. The directional spreading functions are also investigated at various positions in the tank.

  • PDF

Study on the Wall Effect Correction for Propeller Open Water Characteristics in the Medium Size Cavitation Tunnel (중형 공동수조에서의 프로펠러 단독특성에 대한 위벽효과 보정 연구)

  • Suh, Sung-Bu;Kim, Ki-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.718-724
    • /
    • 2010
  • This paper studies the differences due to the wall effect in propeller open water(POW) characteristics tested in a towing tank and in a medium size cavitation tunnel(CT). When the advanced velocity of the propeller is defined as the flow velocity measured in the plane of propeller, POW characteristics resulting from CT has a better relationship with them of towing tank. To obtain the wall effect in the propeller plane, numerical computation using the lifting panel theory is performed with and without the wall around a propeller. Then, POW results in CT are corrected based on the wall effect from numerical results. The POW results obtained from this procedure show a better agreement with the experimental results in the towing tank.

Experimental and Numerical Study on the Characteristics of Free Surface Waves by the Movement of a Circular Cylinder-Shaped Submerged Body in a Single Fluid Layer

  • Jun-Beom Kim;Eun-Hong Min;Weoncheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Analyzing the interactions of free surface waves caused by a submerged-body movement is important as a fundamental study of submerged-body motion. In this study, a two-dimensional mini-towing tank was used to tow an underwater body for analyzing the generation and propagation characteristics of free surface waves. The magnitude of the maximum wave height generated by the underwater body motion increased with the body velocity at shallow submerged depths but did not increase further when the generated wave steepness corresponded to a breaking wave condition. Long-period waves were generated in the forward direction as the body moved initially, and then short-period waves were measured when the body moved at a constant velocity. In numerical simulations based on potential flow, the fluid pressure changes caused by the submerged-body motion were implemented, and the maximum wave height was accurately predicted; however, the complex physical phenomena caused by fluid viscosity and wave breaking in the downstream direction were difficult to implement. This research provides a fundamental understanding of the changes in the free surface caused by a moving underwater body.

Numerical Simulation of Turbulent Flow around KLNG Hull Form with Different Scale Ratio (다른 축척비를 가진 KLNG 선형주위 유동장 시뮬레이션)

  • Ha, Yoon-Jin;Lee, Young-Gill;Kang, Bong-Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, flow characteristics around the hull form of KLNG are investigated by numerical simulations. The numerical simulations of the turbulent flows with the free surface around KLNG have been carried out at Froude number 0.1964 using the FLUENT 6.3 solver with Reynolds stress turbulence model. Several GEOSIM models are adopted to consider the scale effect attendant on Reynolds number. Furthermore, a full scale ship is calculated and the result is compared with the numerical results of GEOSIM models. The calculated results of GEOSIM models and the full scale ship are compared with the experiment data of MOERI towing tank test and Inha university towing tank test. Moreover, wake distribution on the propeller plane of the full scale ship is estimated using the numerical results of GEOSIM models. The prediction result is directly compared with the simulation result in full scale.

Comparative study on the resistance performance of an icebreaking cargo vessel according to the variation of waterline angles in pack ice conditions

  • Kim, Moon-Chan;Lee, Won-Joon;Shin, Yong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.876-893
    • /
    • 2014
  • The resistance performance of an icebreaking cargo vessel according to the variation of waterline angles is investigated numerically and experimentally. A recently developed Finite Element (FE) model is used in our analysis. A resistance test with synthetic ice is performed in the towing tank at Pusan National University (PNU) to compare and validate the computed results. We demonstrate good agreement between the experimental and numerical results. Shipice interaction loads are numerically calculated based on the Fluid Structure Interaction (FSI) method in the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the PNU towing tank are used to compare and validate the numerical simulations. For each waterline angle, numerical and experimental comparisons were made for three concentrations (90%, 80%, and 60%) of pack ice. Ice was modeled as a rigid body, but the ice density was the same as that used in the experiments. A comparative study according to the variation of stem angles is expected to be conducted in the near future.

Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions

  • Kim, Moon-Chan;Lee, Seung-Ki;Lee, Won-Joon;Wang, Jung-Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.116-131
    • /
    • 2013
  • The resistance performance of an icebreaking cargo vessel in pack ice conditions was investigated numerically and experimentally using a recently developed finite element (FE) model and model tests. A comparison between numerical analysis and experimental results with synthetic ice in a standard towing tank was carried out. The comparison extended to results with refrigerated ice to examine the feasibility of using synthetic ice. Two experiments using two different ice materials gave a reasonable agreement. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the Pusan National University towing tank, and with refrigerated ice at the National Research Council's (NRC) ice tank, are used to validate and benchmark the numerical simulations. The designed ice-going cargo vessel is used as a target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. Ice was modeled as a rigid body but the ice density was the same as that in the experiments. The numerical challenge is to evaluate hydrodynamic loads on the ship's hull; this is difficult because LS-DYNA is an explicit FE solver and the FSI value is calculated using a penalty method. Comparisons between numerical and experimental results are shown, and our main conclusions are given.

A Study for Fixed Type Wave Energy Conversion Device with Oscillating Water Column (고정식 진동수주형 파력발전기에 관한 실험적 연구)

  • 김성근;박노식;박인규
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.136-145
    • /
    • 1996
  • The theory is based on two thermodynamic equations for the air mass in the air column and bydrodynamic equation for the relation between the response of the air in the water column and the incident wave. The numerical model is experimented in a two dimensional water tank and the caisson model with sloped front wall is tested in the large towing tank.

  • PDF

Numerical and Experimental Investigations of the Effects of Stem Angle on the Resistance of an Icebreaking Cargo Vessel in Pack Ice Conditions

  • Shin, Yong Jin;Kim, Moon Chan;Kim, Beom Jun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2016
  • The resistance performance of an icebreaking cargo vessel with varied stem angles is investigated numerically and experimentally. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results obtained from model testing with synthetic ice at the Pusan National University towing tank and with refrigerated ice at the National Research Council's (NRC) ice tank are used to validate and benchmark the numerical simulations. The designed icebreaking cargo vessel with three stem angles ($20^{\circ}$, $25^{\circ}$, and $30^{\circ}$) is used as the target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. The comparisons between numerical and experimental results are shown and our main conclusions are given.

Efficiency of Model Oil Fences for One Vessel Using a Physical Experiment and Numerical Calculation (모형 실험과 수치 해석을 통한 단선용 모형 오일펜스의 성능 해석)

  • Kim, Tae-Ho;Jang, Duck-Jong;Yang, Kyung-Uk;Na, Sun-Chol;Kim, Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.140-149
    • /
    • 2008
  • This study evaluated the efficiency of an oil fence and spreading devices for one vessel in a towing tank. A series of model experiments and numerical calculations were conducted using an existing oil fence for two vessels and a new method for one vessel. Models of the oil fence and spreading devices were constructed on $1/20^{th}$ scale from waterproofed nylon fabric and canvas. The tensions acting on the model of the oil fences and the horizontal distance between the spreading devices were calculated numerically while the oil fences were being towed. The results were extremely close to the results of the model experiments. The ratio of the opening width to the total length of the oil fence, which shows the efficiency of the oil fence for one vessel, was 49.7% in 0.4 m/sec. Therefore, the proposed oil fence system should be very useful for oil containment at sea. As the opening width of the oil fence is not proportional to the length of the towing rope, it may be reasonable to maintain the towing rope at approximately 100 m. Furthermore, a reasonable towing speed, when operating the oil fence for one vessel equipped with spreading devices, was within 0.4 m/sec.