• 제목/요약/키워드: Numerical optimization

검색결과 2,321건 처리시간 0.023초

자동차 클러치 페달 암의 무게 최소화를 위한 형상 최적설계 (Shape Optimal Design to Minimize the Weight of the Pedal Arm of an Automotive Clutch)

  • 이부윤;이현우
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.269-276
    • /
    • 2007
  • Optimal thickness and shape of the pedal arm of an automotive clutch is determined, using the numerical optimization technique, by solving the size and shape optimization problems to minimize its weight. For the optimization problems, two cases of stress and displacement constraints are considered: one from the vertical, and the other from the transverse stiffness test condition. The result of the transverse case is shown to be more conservative than that from the vertical case, being determined as the final optimum.

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

Multi-swarm fruit fly optimization algorithm for structural damage identification

  • Li, S.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.409-422
    • /
    • 2015
  • In this paper, the Multi-Swarm Fruit Fly Optimization Algorithm (MFOA) is presented for structural damage identification using the first several natural frequencies and mode shapes. We assume damage only leads to the decrease of element stiffness. The differences on natural frequencies and mode shapes of damaged and intact state of a structure are used to establish the objective function, which transforms a damage identification problem into an optimization problem. The effectiveness and accuracy of MFOA are demonstrated by three different structures. Numerical results show that the MFOA has a better capacity for structural damage identification than the original Fruit Fly Optimization Algorithm (FOA) does.

A Robust Optimization Using the Statistics Based on Kriging Metamodel

  • Lee Kwon-Hee;Kang Dong-Heon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1169-1182
    • /
    • 2006
  • Robust design technology has been applied to versatile engineering problems to ensure consistency in product performance. Since 1980s, the concept of robust design has been introduced to numerical optimization field, which is called the robust optimization. The robustness in the robust optimization is determined by a measure of insensitiveness with respect to the variation of a response. However, there are significant difficulties associated with the calculation of variations represented as its mean and variance. To overcome the current limitation, this research presents an implementation of the approximate statistical moment method based on kriging metamodel. Two sampling methods are simultaneously utilized to obtain the sequential surrogate model of a response. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method. Then, the simulated annealing algorithm of global optimization methods is adopted to find the global robust optimum. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

비선형 최적화 방법을 이용한 이동로봇의 주행 (Navigation of a Mobile Robot Using Nonlinear Least Squares Optimization)

  • 김곤우;차영엽
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1404-1409
    • /
    • 2011
  • The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the pose error between the goal position and the position of a mobile robot. Using the nonlinear least squares optimization method, the optimal speeds of the left and right wheels can be found as the solution of the optimization problem. Especially, the rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot using the Jacobian derived from the kinematic model. It will be very useful for applying to the mobile robot navigation. The performance was evaluated using the simulation.

저전압용 BLDC 전동기의 소비전류 및 토크리플 최소화 연구 (A Minimization Study of Consuming Current and Torque Ripple of Low Voltage BLDC Motor)

  • 김한들;신판석
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1721-1724
    • /
    • 2017
  • This paper presents a numerical optimization technique to reduce input current and torque ripple of the low voltage BLDC motor using core, coil and switching angle optimization. The optimization technique is employed using the generalized response surface method(RSM) and sampling minimization technique with FEM. A 50W 24V BLDC motor is used to verify the proposed algorithm. As optimizing results, the input current is reduced from 2.46 to 2.11[A], and the input power is reduced from 59 [W] to 51 [W] at the speed of 1000 [rpm]. Also, applied the same optimization algorithm, the torque ripple is reduced about 7.4 %. It is confirmed that the proposed technique is a reasonably useful tool to reduce the consuming current and torque ripple of the low voltage BLDC motor for a compact and efficient design.

구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화 (Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계 (Hybrid Structural Control System Design Using Preference-Based Optimization)

  • 박원석;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

An improved algorithm in railway truss bridge optimization under stress, displacement and buckling constraints imposed on moving load

  • Mohammadzadeh, Saeed;Nouri, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.571-594
    • /
    • 2013
  • Railway truss bridges are amongst the essential structures in railway transportation. Minimization of the construction and maintenance costs of these trusses can effectively reduce investments in railway industries. In case of railway bridges, due to high ratio of the live load to the dead load, the moving load has considerable influence on the bridge dynamics. In this paper, optimization of the railway truss bridges under moving load is taken into consideration. The appropriate algorithm namely Hyper-sphere algorithm is used for this multifaceted problem. Through optimization the efficiency of the method successfully raised about 5 percent, compared with similar algorithms. The proposed optimization carried out on several typical railway trusses. The influences of buckling, deformation constraints, and the optimum height of each type of truss, assessed using a simple approximation method.

Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects

  • Zivari, Ahmad;Habibi, Alireza;Khaledy, Nima
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.117-123
    • /
    • 2019
  • Optimization is an important subject which is widely used in engineering problems. In this paper, an analytical method is developed for optimum design of reinforced concrete beams considering both flexural and shear effects. A closed-form formulation is derived for optimal height and rebar of beams. The total material cost of steel and concrete is considered as the objective function which is minimized during the optimization process. The ultimate flexural and shear capacities of the beam are considered as the main constraints. The ultimate limit state is considered for deriving the relations for flexural capacity of the beam. The design requirements are considered according to the item 9 of the Iranian National Building. Analytical formulas and some curves are proposed to be used for optimum design of RC beams. The proposed method can be used to perform the optimization of RC beams without the need of any prior knowledge in optimization. Also, the results of the studied numerical example show that the proposed method results in a better design comparing with the other methods.