• Title/Summary/Keyword: Numerical model updating

검색결과 103건 처리시간 0.441초

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선 (Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method)

  • 박상민;이진학;조철호;박진순
    • 한국해안·해양공학회논문집
    • /
    • 제32권5호
    • /
    • pp.285-295
    • /
    • 2020
  • 해상에 설치된 관측타워에 미치는 환경 하중 변화에 따른 구조물의 동특성 파악은 구조물의 안전성 평가에 중요한 인자로 활용되고 있다. 이 연구에서는 새만금 방조제 인근에 위치한 만경해상관측타워(이하 만경타워) 구조물에 대한 현장계측실험을 통하여 동특성을 분석하고 수치해석모델을 구성하였다. 계측실험 결과, 조위가 하강할수록 고유주파수는 증가하는 추세를 보였다. 또한 동일한 모드가 2개의 주파수를 갖는 것을 확인하였으며, 이는 세굴에 의하여 파일과 지반이 접촉 시에 고유주파수가 일부 증가하는 현상으로 판단되었다. 수치해석을 위하여 구조물의 상부 질량, 가상고정점, 세굴 깊이 및 유체 영향을 고려한 부가 질량 등을 만경타워의 구조적 특성으로 반영하였으며, 추정된 고유주파수 및 패턴서치 알고리즘으로부터 수치해석모델에 대한 모델 개선 작업을 수행하였다. 개선된 해석모델로부터 추후 만경타워에 대한 안정성 검토 측면에서의 연구에 적용될 수 있을 것으로 기대된다.

전역적/국부 응답을 이용한 철골조의 모델 업데이팅 기법 제안 (A Proposal of Model Updating Method for Steel Frame Using Global/Local Responses)

  • 오병관;최세운;김유석;박효선
    • 한국전산구조공학회논문집
    • /
    • 제28권4호
    • /
    • pp.401-408
    • /
    • 2015
  • 기존 구조물의 모델 업데이팅 기법은 주로 진동 계측을 통해 얻은 전역적 구조 응답-모달 파라미터-를 이용한다. 모달 파라미터를 이용하여 업데이트된 모델은 전역적 구조 응답을 잘 추정할 수 있지만, 부재 레벨의 안전성 평가를 위한 국부적 응답 예측에는 어려움이 있다. 구조물 내 구조 부재들의 변형률 계측을 통해 응력을 추정하고, 안전성 평가가 이루어진다. 따라서, 본 연구는 모달 파라미터 이외에 로컬 구조 부재들에 가하는 해머 가력을 통해 계측한 변형률을 추가적으로 모델 업데이팅에 이용한다. 본 연구가 제안하는 모델 업데이팅에서 목적함수는 전역적/국부적 계측 응답과 모델의 응답간의 차로 설정되며 NSGA-II를 이용하여 이를 최소화된다. 업데이트 모델에서 예측하는 변형률 응답은 철골조의 안전성 평가에 활용된다. 제안한 기법은 철골 프레임에 대한 시뮬레이션과 해머 가력 실험을 통해 검증된다.

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.

유한요소 모델 개선기법을 이용한 비비례 감쇠행렬 추정 (Identification of a Nonproportional Damping Matrix Using the Finite Element Model Updating)

  • 민천홍;김형우;이창호;홍섭;최종수;여태경
    • 한국해양공학회지
    • /
    • 제26권4호
    • /
    • pp.86-91
    • /
    • 2012
  • A new identification method for a nonproportional damping matrix using the finite element (FE) model updating technique is proposed. Mass and stiffness matrices of the undamped system are identified by FE model updating method. Sensitivity analysis is used to update the FE model, and zero frequencies are considered as design parameters to supplement the information of vibration characteristics. The nonproportional damping matrix is identified through the proposed method. A numerical example is considered to verify the performance of the proposed method. As a result, the damping matrix of the nonproportional system is estimated accurately.

다구찌 방법을 사용한 구조물의 손상 평가 (Damage Assessment of Structures Using Taguchi Method)

  • 권계시
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.720-728
    • /
    • 2006
  • A robust damage assessment technique is presented such that the location and severity of damage in structures can be identified using measured modal data. In order to identify the damage efficiently, the concept of design of experiment using orthogonal array is used for screening the main effects of each parameter which corresponds to possible damage location in FE model. Then, Taguchi method, which has been widely used for robust design in industry, is applied to parameter updating in analytical FE model. The numerical simulations of a truss structure show that damages in structure can be located from updated parameters.

Stochastic upscaling via linear Bayesian updating

  • Sarfaraz, Sadiq M.;Rosic, Bojana V.;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.211-232
    • /
    • 2018
  • In this work we present an upscaling technique for multi-scale computations based on a stochastic model calibration technique. We consider a coarse-scale continuum material model described in the framework of generalized standard materials. The model parameters are considered uncertain, and are determined in a Bayesian framework for the given fine scale data in a form of stored energy and dissipation potential. The proposed stochastic upscaling approach is independent w.r.t. the choice of models on coarse and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach to calibrate coarse scale elastic and inelastic material parameters.

폐루프 공진 주파수를 이용한 모델 개선법 (Model Updating Using the Closed-loop Natural Frequency)

  • 정훈상;박영진
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

Numerical model for bolted T-stubs with two bolt rows

  • Daidie, Alain;Chakhari, Jamel;Zghal, Ali
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.343-361
    • /
    • 2007
  • This article presents a numerical tool for dimensioning two-threaded fasteners connecting prismatic parts subjected to fatigue tension loads that are coplanar with the screw axis. A simplified numerical model is developed from unidirectional finite elements, modeling the connected parts and screws with bent elements and the elastic contact layer between the parts with springs. An algorithm updating the contact stiffness matrix, calculating forces and displacements at each node of the structure and thus normal stresses in the screws in both static and fatigue is further developed using C language. An experimental study is also conducted in parallel with the numerical approach to validate the developed model assumptions, the numerical model and the 3D finite element results. Since stiffness values for the compressive zones in the parts are analytically difficult to determine, a statistical software method is used, from which a tuning factor is derived for identifying these stiffness values. The method is also applied to set out the influence of each parameter on the fatigue behaviour of each screw. Finally, the developed model will be used to establish a new, sophisticated, fast and accurate tool for dimensioning bolted mechanical structures.