• 제목/요약/키워드: Numerical model test

Search Result 2,336, Processing Time 0.027 seconds

Square plates as symmetrical anchor plates under uplift test in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.593-612
    • /
    • 2014
  • The uplift response of symmetrical square anchor plates has been evaluated in physical model tests and numerical simulations using Plaxis. The behavior of square anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm Length square plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for square anchor plates. Numerical analysis using square anchor plates was conducted based on the hardening soil model (HSM). The research has shown that the finite element results are higher than the experimental findings in loose sand.

Centrifuge Modeling and Numerical Analysis on Breakwater Construction (방파제 축조공사의 Centrifuge 모델링과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Yoon, Dae-Hee
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.81-90
    • /
    • 2011
  • Centrifuge modeling and numerical analysis on works of breakwater construction were performed to investigate the behavior of caisson type of breakwater and foundation treated with the method of DCM (Deep Cement Mixing) under the condition of wave action in field. In centrifuge modeling, construction sequence of breakwater caisson such as preparation of ground, treatment of DCM, installation of rubble mound, placement of breakwater caisson and lateral loading on the breakwater due to wave action were reconstructed. Lateral movement of model breakwater and ground reaction in the vertical direction were monitored during test. Stress concentration ratio between the untreated ground and the treated ground with DCM was evaluated from measurement of vertical stresses on each ground. Numerical analysis with the software of PLAXIS was carried to compare with Results of centrifuge model test. It was found that stability of model breakwater was maintained during stage of construction and the compared results about stress concentration ratio were in relatively good agreements.

  • PDF

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park, Young-Min;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.269-272
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using computational fluid dynamics. For the numerical analysis of wind turbine. Three dimensional Navier-Stokes solver with various turbulence models was tested and realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with experiment and blind test data. Using the present method, numerical simulations for various size of wind tunnel model were carried out and characteristics were observed in detail. The power loss due to the interference between wind turbine and nacelle was also computed for relatively larger nacelle installation in wind tunnel test. The present results showed good correlations with experimental data and reasonable trends of scale effect of wind turbine.

  • PDF

Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser

  • Wang, Chunxiao;Wang, Yu;Liu, Yu;Li, Peng;Zhang, Xiantang;Wang, Fei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.223-235
    • /
    • 2021
  • The Vortex-Induced Vibration (VIV) test system on deepwater riser based on Bare Fiber Bragg Grating (BFBG) sensor technology was designed. Meanwhile, a riser VIV response numerical model was established based on the work-energy principle. The results show that the first-order vibration frequency dominates the vibration of the riser, and as the velocity increases, the dominant frequency of the riser gradually increases under the effect of different top tensions. At the same velocity, as the top tension increases step by step, the dominant frequency and fatigue damage at the same position along the axial length of the riser both gradually decreases. The model test and numerical simulation show a relatively consistent change, maintaining a high degree of agreement. The process control system based on BFBG of model test has excellent performance, and FBG sensors have great advantages in VIV test of a vertical riser in water.

Shake table test of Y-shaped eccentrically braced frames fabricated with high-strength steel

  • Lian, Ming;Su, Mingzhou
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.501-513
    • /
    • 2017
  • To investigate the seismic performance of Y-shaped eccentrically braced frames fabricated with high-strength steel (Y-HSS-EBFs), a shake table test of a 1:2 scaled three-story Y-HSS-EBF specimen was performed. The input wave for the shake table test was generated by the ground motions of El Centro, Taft, and Lanzhou waves. The dynamic properties, acceleration, displacement, and strain responses were obtained from the test specimen and compared with previous test results. In addition, a finite element model of the test specimen was established using the SAP2000 software. Results from the numerical analysis were compared with the test specimen results. During the shake table test, the specimen exhibited sufficient overall structural stiffness and safety but suffered some localized damage. The lateral stiffness of the structure degenerated during the high seismic intensity earthquake. The maximum elastic and elastoplastic interstory drift of the test specimen for different peak ground accelerations were 1/872 and 1/71, respectively. During the high seismic intensity earthquake, the links of the test specimen entered the plastic stage to dissipate the earthquake energy, while other structural members remained in the elastic stage. The Y-HSS-EBF is a safe, dual system with reliable seismic performance. The numerical analysis results were in useful agreement with the test results. This finding indicated that the finite element model in SAP2000 provided a very accurate prediction of the Y-HSS-EBF structure's behavior during the seismic loadings.

Validating Numerical Analysis Model Modeling Method by Polyhedral Rubble Mound Structure Arrays (다면체 사석배열 해안구조물에 대한 수치해석모델의 모델링 기법 검증)

  • Choi, Woong-Sik;Kim, Kee-Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.723-728
    • /
    • 2014
  • Hydraulic experiments are performed in order to verify the swash effect of seashore structures installed to prevent scouring. However, a great deal of investment and time are required for producing the test apparatus and seashore structure used to perform the hydraulic experiment. The swash effect can be predicted, however, by using a numerical model and validation can be done based on comparisons of the numerical model and hydraulic experiment analysis results, thereby saving the cost and time required for producing the test apparatus and seashore structure. Taking a polyhedral rubble mound structure as the subject, this study performed a comparative analysis of wave run-up and run-down height of the numerical model interpretative results and the hydraulic experiment results, and validated the interpretative simulation wave test modeling technique. The study also predicted the swash effect by using the numerical interpretation approach method, whereby the volume ratio and friction area of the rubble mound were varied for different results.

Parameter Evaluation of a Smooth Elasto-plastic Cap Model (연속탄소성 캡 모델의 정수 산정)

  • Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • In this paper, the method of parameter estimation of a mathematical constitutive model blown as the smooth elasto-plastic cap model is studied. To predict the response of the real soil using this model, the eight parameters describing the constitutive equations have to be determined. First, experimental data are obtained from simple laboratory experiments such as one dimensional confined compression test in a consolidometer and drained triaxial compression test with the Ottawa sand f3r the reference value. Then, the numerical experiments are performed in the cap model with initial guessed parameters. The optimization method is utilized to fit the model response to experimental data by minimizing the error between the laboratory and numerical responses. Special attention is given to the parameter estimation procedure of numerical triaxial test due to the difficulty of the lateral strain measurements.

Study on the Numerical Analysis of Model Ground with SCP (SCP가 타설된 모형지반의 압밀거동에 관한 수치해석적 연구)

  • Hwang, Sung-Pil;Im, Jong-Chul;Kang, Yeoun-Ike;Kwon, Jeong-Geun;Joo, In-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1224-1231
    • /
    • 2009
  • 1D Analysis have been using Design of SCP in order to improve the soft ground. But 2D Analysis is researching and developing to get more accurate results. Using 2D Analysis, suitable Numerical Analysis Model should be selected and be tested in many situations. In this study, Laboratory Model Tests are analyzed by Numerical Analysis Method. After selecting Numerical Analysis Model, it is being tested many conditions.

  • PDF

Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush

  • Li, Li-Ping;Chen, Di-Yang;Li, Shu-Cai;Shi, Shao-Shuai;Zhang, Ming-Guang;Liu, Hong-Liang
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1011-1025
    • /
    • 2017
  • The geological conditions surrounding the Jijiapo Tunnel of the Three Gorges Fanba Highway project in Hubei Province are very complex. In this paper, a 3-D physical model was carried out to study the evolution process of filling-type fracture water inrush and mud gush based on the conditions of the section located between 16.040 km and 16.042 km of the Jijiapo Tunnel. The 3-D physical model was conducted to clarify the effect of the self-weight of the groundwater level and tunnel excavation during water inrush and mud gush. The results of the displacement, stress and seepage pressure of fracture and surrounding rock in the physical model were analyzed. In the physical model the results of the model test show that the rock displacement suddenly jumped after sustainable growth, rock stress and rock seepage suddenly decreased after continuous growth before water inrushing. Once water inrush occured, internal displacement of filler increased successively from bottom up, stress and seepage pressure of filler droped successively from bottom up, which presented as water inrush and mud gush of filling-type fracture was a evolving process from bottom up. The numerical study was compared with the model test to demonstrate the effectiveness and accuracy of the results of the model test.

Physical and numerical modeling of drag load development on a model end-bearing pile

  • Shen, R.F.;Leung, C.F.;Chow, Y.K.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.195-221
    • /
    • 2013
  • A centrifuge model study is carried out to investigate the behavior of pile subject to negative skin friction induced by pile installation, ground water drawdown and surcharge loading. A single end-bearing pile is examined as the induced negative skin friction would induce the most severe stress on the pile structural material as compared to friction piles. In addition, the behavior of the pile under simultaneous negative skin friction and dead/live loads is examined. To facilitate detailed interpretations of the test results, the model setup is extensively instrumented and involves elaborate test control schemes. To further examine the phenomenon of negative skin friction on an end-bearing pile, finite element analyses were conducted. The numerical analysis is first validated against the centrifuge test data and subsequently extended to examine the effects of pile slenderness ratio, surcharge intensity and pile-soil stiffness ratio on the degree of mobilization of negative skin friction induced on the pile. Finally experimental and numerical studies are conducted to examine the effect of applied transient live load on pile subject to negative skin friction.