• Title/Summary/Keyword: Numerical model test

Search Result 2,346, Processing Time 0.029 seconds

Model test method for dynamic responses of bridge towers subjected to waves

  • Chengxun Wei;Songze Yu;Jiang Du;Wenjing Wang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.705-714
    • /
    • 2023
  • In order to establish a dynamic model test method of bridge pylons subjected to ocean waves, the similarity method of hydroelastic model test for bridge pylons were analyzed systematically, and a model design and production method was proposed. Using this method, a dynamic test model of a bridge pylon was made, and then a free vibration test on the model structure and a dynamic response test of the model structure under wave actions were conducted in a wave flume. The results of the free vibration test show that the primary natural frequencies of the structure by the model test are close to the design frequencies of the prototype structure, indicating that the dynamic characteristics of the bridge pylon are well simulated by the model structure. The results of the dynamic response test show that wave induced base shear forces and motion responses on the model structure are consistent with the numerical results of the prototype structure. The model test results confirm that the proposed model test design method is feasible and applicable. It has application and reference significances for model testing studies of such marine bridge structures.

Tensile Design Criteria Evaluation of Cast-In-Place Anchor by Numerical Analysis (수치해석에 의한 직매형 앵커기초의 인장 설계기준 평가)

  • 장정범;서용표;이종림
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.209-216
    • /
    • 2004
  • Numerical analysis is carried out to identify the appropriateness of the design codes that is available for the tensile design of fastening system at Nuclear Power Plant (NPP) in this study. This study is intended for the cast-in-place anchor that is widely used for the fastening of equipment in Korean NPPs. The microplane model and the elastic-perfectly plastic model are employed for the quasi-brittle material like concrete and for the ductile material like anchor bolt as constitutive model for numerical analysis and smeared crack model is employed for the crack and damage phenomena. The developed numerical model is verified on a basis of the various test data of cast-in-place anchor. The appropriateness of both ACI 349 Code and CCD approach of CEB-FIP Code is evaluated for the tensile design of cast-in-place anchor and it is proved that both design codes give a conservative results compared with real tensile capacity of cast-in-place anchor.

  • PDF

Experimental and numerical modeling of uplift behavior of rectangular plates in cohesionless soil

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.341-358
    • /
    • 2014
  • Uplift response of rectangular anchor plates has been investigated in physical model tests and numerical simulation using Plaxis. The behavior of rectangular plates during uplift test was studied by experimental data and finite element analyses in cohesionless soil. Validation of the analysis model was also carried out with 200 mm and 300 mm diameter of rectangular plates in sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 200 mm and 300 mm computed maximum displacements were excellent for rectangular anchor plates. Numerical analysis using rectangular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in dense and loose packing of cohesionless soil.

A Numerical Study of Fire Development Characteristics on a Ro/Ro Ferry Vehicle Deck. (Ro/Ro 여객선 차량갑판의 화재 특성에 관한 수치 해석 연구)

  • Kim, Sung-Chan;Ryou, Hong-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.48-54
    • /
    • 2004
  • The present study investigates the fire development characteristics on a Ro-Ro ferry vehicle using the modified FDS code considering droplet break-up. Numerical simulations are compared with model-scale tests for validation of field model. The predicted results such as smoke layer temperature and oxygen concentration are in good agreement with model-scale tests. Also, it is shown that water spray systems are very effective to control the fire development on a vehicle deck. These numerical simulations using a field model may be helpful in accomplishing the fire safety for marine vehicle.

Development of a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation of dredged soil- (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 수치해석 모델 개발)

  • Kwak, Tae-Hoon;Yoon, Sang-Bong;An, Yong-Hoon;Choi, Eun-Seok;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.3-12
    • /
    • 2010
  • Vertical drains have been commonly used to increase the rate of the consolidation of dredged material. The installation of vertical drains additionally provides a radial flow path in the dredged foundation. The objective of this study develops a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the effect of vertical drain in dredged foundation which is in process of self-weight consolidation. The non-linear relationship between the void ratio and effective stress and permeability during consolidation are taken into account in the numerical model. The results of the numerical analysis are compared with that of the self-weight consolidation test in which an artificial vertical drain is installed. In addition, the numerical model developed in this paper is the simplified analytical method proposed by Ahn et, al (2010). The comparisons show that the developed numerical model can properly simulate the consolidation of the dredged material with the vertical drains installed.

  • PDF

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation (불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사)

  • Lee, Minho;Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.93-105
    • /
    • 2017
  • This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.

Development and performance evaluation of SB3-level roadside barrier for highway transition zone (고속국도용 SB3등급 전이구간 방호울타리 개발 및 성능평가)

  • Lee, Jungwhee;Cho, Jong-Seok;Lee, Jae-Hyuk
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.13-21
    • /
    • 2017
  • PURPOSES : In this research, an SB3-level roadside barrier for a highway transition zone that meets the newly established guide Installation and Management Guide for Roadside Safety Appurtenance is developed. Its performance is evaluated by a numerical simulation and real-scale vehicle impact test. METHODS : The commercial explicit dynamic software LS-DYNA is utilized for impact simulation. An FE model of a passenger vehicle developed and released by the National Crash Analysis Center (NCAC) at George Washington University and a heavy goods vehicle (HGV) model developed by the TC226/CM-E Work Group are utilized for impact simulation. The original vehicle models were modified to reflect the conditions of test vehicles. The impact positions of the passenger vehicle and truck to the transition guardrail were set as 1/2 and 3/4 of the transition region, respectively, according to the guide. RESULTS : Based on the numerical simulation results of the existing transition barrier, a new structural system with improved performance was suggested. According to the result of a numerical simulation of the suggested structural system, two sets of transition barriers were manufactured and installed for real-scale vehicle impact tests. The tests were performed at a test field for roadside safety hardware of the Korea Highway Corporation Research Institute. CONCLUSIONS : The results of both the real-vehicle impact tests and numerical simulations of the developed transition barrier satisfied the performance criteria, and the results of numerical simulation showed good correlation with the test results.

A Study on the Shock Analysis of the Multi-Function Console According to the Shock Response Spectrum Requirements of the Elastic Platform (탄성플랫폼 충격응답 스펙트럼 기준에 따른 다기능콘솔 충격해석 연구)

  • Park, Jae Hoon;Kim, Won Hyung;Kim, Hyun Sil;Choi, Young Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.805-811
    • /
    • 2016
  • Prior to installation in a navy ship, shipboard equipment should be qualified by shock test requirements. The multi-function console mounted on the elastic platform of the ship should also withstand given shock loads. In this study, both real shock test methods, as well as numerical computer simulations using the finite element method were used to verify structural durability under shock load conditions. First, we used domestic test facilities to perform possible shock tests, including an impact hammer test, a drop table test and a shaker shock test. Full model tests satisfying the shock response spectrum level were performed. Thereafter, an analytical model of the complex console structure was built by the finite element method. Finally, numerical results were verified by modal test results of the real product and an FEA analysis was also performed with a full model transient response analysis.

Prediction for Stress-Strain Behavior of Remolded Clay using Single Surface Constitutive Model (Single Surface 구성모델을 이용한 재성형 점토의 응력-변형률 거동 예측)

  • 이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.97-106
    • /
    • 2000
  • The study is closely relevant to Lade's single work hardening model. This model has been shown to have good applicability to cohesive soils. However the validation of this model on the clayey soils has not been satisfactorily reported. To scrutinize the applicability of this model on clayey foundation the laboratory tests for Kwangyang clayey soils were performed using the improved cubical triaxial test apparatus designed originally by Lade. A computer program was developed by which soil parameters for the single work-hardening model can be rationally determined by deleting some dispersed test data generated usually at the initial stage of laboratory tests. And using the program numerical analysis of the cubical clayey specimens using intermediate principal stress was carried out and a good agreement between observed values and numerical results was found.

  • PDF