• Title/Summary/Keyword: Numerical inversion

Search Result 295, Processing Time 0.035 seconds

Mass Transport of Soluble Species Through Backfill into Surrounding Rock (용해도가 큰 핵종의 충전물질에서 주변 암반으로의 이동 현상)

  • Kang, Chul-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, voids, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the“gap”, e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span.

  • PDF

The Melting Process in an Ice-Ball Capsule (아이스볼내의 융해과정에 대한 해석)

  • Suh, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.577-588
    • /
    • 1995
  • A numerical study is made on the melting process of an unconstrained ice inside an isothermal ice-ball capsule. The unmelted ice core is continuously ascending on account of buoyancy forces. Such a buoyancy-assisted melting is commonly characterized by the existence of a thin liquid film above the ice core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow associated with the buoyancy-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved in one domain. Numerical results are obtained by varying the wall temperature and initial temperature. The present results reported the transition of the flow pattern in a spherical capsule, as the wall temperature was increased over the density inversion point. In addition, time wise variation of the shapes for the liquid film and the lower ice surface, the time rate of change in the melt volume fraction and the melting distance at symmetric line is analyzed and is presented.

  • PDF

Numerical Analysis of Variations of Laser Parameters in DF Chemical Laser According to Pressure Ratio (불화중수소 화학레이저의 연료 및 산화제 분사 압력비에 따른 레이저 발진 성능 특성 변화에 관한 수치적 연구)

  • Park Jun Sung;Baek Seung Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.9-12
    • /
    • 2004
  • A numerical simulation is presented for investigating the effects of pressure ratio of $D_2$ injector to supersonic nozzle on the Population inversion in the DF chemical laser cavity, while a latins concurrently takes place. In this study, these phenomena are investigated by means of analyzing the distributions of the DF excited molecules, while simultaneously estimating the maximum small signal gains and power in the DF chemical laser cavity. Major results reveal that the higher $D_2$ injection pressure provides a favorable condition for $DF^{(1)}$-$DF^{(0)}$ transition to generate the higher power laser beam.

  • PDF

Hydraulic conductivity estimation by considering the existence of piles: A case study

  • Yuan, Yao;Xu, Ye-Shuang;Shen, Jack S.;Wang, Bruce Zhi-Feng
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.467-477
    • /
    • 2018
  • Estimation of hydraulic parameters is a critical step during design of foundation dewatering works. When many piles are installed in an aquifer, estimation of the hydraulic conductivity should consider the blocking of groundwater seepage by the piles. Based on field observations during a dewatering project in Shanghai, hydraulic conductivities are back-calculated using a numerical model considering the actual position of each pile. However, it is difficult to apply the aforementioned model directly in field due to requirement to input each pile geometry into the model. To develop a simple numerical model and find the optimal hydraulic conductivity, three scenarios are examined, in which the soil mass containing the piles is considered to be a uniform porous media. In these three scenarios, different sub-regions with different hydraulic conductivities, based on either automatic inverted calculation, or on effective medium theory (EMT), are established. The results indicate that the error, in the case which determines the hydraulic conductivity based on EMT, is less than that determined in the automatic inversion case. With the application of EMT, only the hydraulic conductivity of the soil outside the pit should be inverted. The soil inside the pit with its piles is divided into sub-regions with different hydraulic conductivities, and the hydraulic conductivity is calculated according to the volume ratio of the piles. Thus, the use of EMT in numerical modelling makes it easier to consider the effect of piles installed in an aquifer.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF

Improvement of Bit Error Rate through the Optimization of 320 Gbps WDM System with Non Zero-Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 320 Gbps WDM 시스템에서 최적화를 통한 비트 에러율 개선)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.103-113
    • /
    • 2006
  • The numerical methods of finding the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero-dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that two optimal parameters depend on each other, but less related with the searching procedure. The methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which is a serious problem but the condition in the case of applying the OPC into multi-channels WDM system.

  • PDF

A Unified Analytical Surface Potential Model for SOI MOSFETs (SOI MOSFET의 모든 동작영역을 통합한 해석적 표면전위 모델)

  • 유윤섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • We present a new unified analytical front surface potential model, which can accurately describe the transitions between the partially-depleted (PD) and the fully-depleted (FD) regimes with an analytical expression for the critical voltage V$_{c}$ delineating the PD and the FD region. It is valid in all regions of operation (from the sub -threshold to the strong inversion) and has the shorter calculation time than the iterative procedure approach. A charge sheet model based on the above explicit surface potential formulation is used to derive a single formula for the drain current valid in all regions of operation. Most of the secondary effects can be easily included in the charge sheet model and the model accurately reproduces various numerical and experimental results. No discontinuity in the derivative of the surface potential is found even though three types of smoothing functions are used. More importantly, the newly introduced parameters used in the smoothing functions do not strongly depend on the process parameter.

Delineation of water seepage in earth-fill embankments by electrical resistivity method (전기비저항탐사에 의한 제당의 누수구간 탐지)

  • 정승환;김정호;양재만;한규언;김영웅
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.47-57
    • /
    • 1992
  • Geophysical methods applied to water seepage problem in earth-fill embankment attempt to detect and map the estimate of size and depth of the seepage path. Seepage zones generally produce lOW resistivity anomalies due to high saturation of water. Dipole-dipole resistivity surveying technique, which is actually a combined sounding-profiling procedure, was used to delineate the seepage path through this study. In this study, the finite difference methods to solve the electric potential distribution in 2 112 dimension, was adopted as the numerical scheme for the forward problem. Second order Marquart's method, one the iterative damped least square methods, was selected for the automatic inversion. The computer program was implemented in FORTRAN 77 for 1 6-bit personal computer. In this paper, we present a case history which illustrates the application of dipole-dipole resistivity method to the delineation of water flow in earth-fill structures. Also the automatic two-dimensional resistivity inversion was applied to a field data where the interpretive advantages of the program become evident.

  • PDF

Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity under Delay Quality-of-Service Constraints in Nakagami Fading Environments

  • Zhang, Ping;Xu, Ding;Feng, Zhiyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.632-650
    • /
    • 2013
  • The paper considers a spectrum sharing cognitive radio (CR) network coexisting with a primary network under the average interference power constraint. In particular, the secondary user (SU) is assumed to carry delay-sensitive services and thus shall satisfy a given delay quality-of-service (QoS) constraint. The secondary receiver is also assumed to be equipped with multiple antennas to perform maximal ratio combining (MRC) to enhance SU performance. We investigate the effective capacity of the SU with MRC diversity under aforementioned constraints in Nakagami fading environments. Particularly, we derive the optimal power allocation to achieve the maximum effective capacity of the SU, and further derive the effective capacity in closed-form. In addition, we further obtain the closed-form expressions for the effective capacities under three widely used power and rate adaptive transmission schemes, namely, optimal simultaneous power and rate adaptation (opra), truncated channel inversion with fixed rate (tifr) and channel inversion with fixed rate without truncation (cifr). Numerical results supported by simulations are presented to consolidate our studies. The impacts on the effective capacity of various system parameters such as the number of antennas, the average interference power constraint and the delay QoS constraint are investigated in detail. It is shown that MRC diversity can significantly improve the effective capacity of the SU especially for cifr transmission scheme.

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1854-1862
    • /
    • 2006
  • The numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are prosed, which are able to effectively compensate overall channels in $8{\times}40Gbps$Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI. Thus, the methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which generates a serious problem if it was not made but it is the condition in the case of applying the OPC into multi-channels WDM system.