• Title/Summary/Keyword: Numerical errors

Search Result 872, Processing Time 0.034 seconds

An Attitude Error Estimation Performance Comparison of Tightly Coupled INS/GPS Navigation System using Different Measurements (강결합 방식의 INS/GPS 시스템에서의 자세 오차 추정 성능 비교)

  • Yu, Hae-Sung;Kim, Cheon-Joong;Yoo, Ki-Jeong;Lee, Youn-Seon;Park, Heung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • This paper addresses the performance comparisons of the GPS pseudorange and pseudorange rate measurements in the tightly coupled INS/GPS Navigation systems. Even though the two measurements have the same ability in estimating level attitude errors, pseudorange rate has an advantage in improving estimating heading attitude error performance. The performance of pseudorange and pseudorange rate measurements is compared in numerical simulations and van test.

A Study on 3D Equivalent Magnetic Circuit Network Method Using Trapezoidal Element (사다리꼴 요소를 이용한 3차원 등가자기회로망 해석에 관한 연구)

  • Kim, Sol;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.449-456
    • /
    • 2002
  • 3D Equivalent magnetic Circuit Network Method (EMCNM) is comparatively the easy way that analyzes 3D models of Electric Machine by using permeance as a distributive magnetic circuit parameter under the existing magnetic equivalent circuit method and Numerical Method. The existing 3D EMCNM could not correctly describe the shape of an analysis target when using rectangular shape element or fan shape element, so it made errors when calculating permeance. Therefore, this paper proposes the trapezoidal element contained rectangular element, fan-shape element, and quadrilateral element to express a shape. The proposed method in this research was confirmed as a useful and an accurate method through comparing with the analysis result of SRM model that is sufficiently guaranteed by 2D-Analysis.

A Numerical Analysis of Activation Energy by a Slope of TSC Curve (열자격전류곡선의 경사에 의한 활성화에너지의 수치해석)

  • 김기준;김상진;송자윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.163-166
    • /
    • 1995
  • It was investigated the properties of TSC (Thermally Stimulated Current) to understand carriers behavior from long ago. Activation Energy of their properties is very important to verify electrical characteristics. So, for many years, many researchers were worked to get the activation energy, more compeletely. But, if boundary conditions were not satisfied, the values of activation energy contained several errors. In this work, to obtain the activation energy related to charged particles, the peak temperature Tp and the slope of tangential line on any coordinates of Arrhenius plot are applied. The calculation process can be denied with by computer, and the result of observation shows that the cures of calculation data and simulation data coincide very compeletely.

  • PDF

Iterative parameter estimation for nonlinear measurements (비선형 측정에 대한 반복 계수측정 기법)

  • Chung, Tae-Ho;Je, Chang-Hae;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.314-317
    • /
    • 1993
  • In this paper, the IPE(Iterative Parameter Estimation) methods for the nonlinear measurements are proposed. The IPE methods convert the problems of the parameter estimation for the nonlinear measurements to that of the solution of the nonlinear equations approximately and use several iterative numerical solutions, such as fixed points theory, Newton's methods, quasi-Newton's methods and steepest descent techniques. the IPE methods for the nonlinear measurements-in the case of the error estimation for the inertial navigation systems are simulated, and it is found that the estimation errors for the nonlinear measurements decrease rapidly and converge to almost that of the linear LSE(Least Squares Estimation) when the IPE methods are applied.

  • PDF

Minimum Variance FIR Smoother for Model-based Signals

  • Kwon, Bo-Kyu;Kwon, Wook-Hyun;Han, Soo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2516-2520
    • /
    • 2005
  • In this paper, finite impulse response (FIR) smoothers are proposed for discrete-time systems. The proposed FIR smoother is designed under the constraints of linearity, unbiasedness, FIR structure, and independence of the initial state information. It is also obtained by directly minimizing the performance criterion with unbiased constraints. The approach to the MVF smoother proposed in this paper is logical and systematic, while existing results have heuristic assumption, such as infinite covariance of the initial state. Additionally, the proposed MVF smoother is based on the general system model that may have the singular system matrix and has both system and measurement noises. Thorough simulation studies, it is shown that the proposed MVF smoother is more robust against modeling uncertainties numerical errors than fixed-lag Kalman smoother which is infinite impulse response (IIR) type estimator.

  • PDF

Varying skill prameter based on error signal and its effect

  • Hidaka, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1741-1744
    • /
    • 2005
  • In this paper, we proposed an adaptive skill element based on error signal. We assume that human progress their skills of actions based on errors, then an inverse dynamic of human motion have to changes. Human controller consists from feedback element (FB) and feed forward element (FF) and their elements cooperate to control actions. Under the assumption, we vary the connection of FF and FB by error signal. We propose the index function for change of a skill parameter. From results of the numerical simulations for the varying skill parameter with index function, we consider that the position error given by our vision changes the skill element and we confirm that the position error is the one of the estimate function for the improvement in our skill.

  • PDF

GPU Algorithm for Outer Boundaries of a Triangle Set (GPU를 이용한 삼각형 집합의 외경계 계산 알고리즘)

  • Kyung, Min-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.262-273
    • /
    • 2012
  • We present a novel GPU algorithm to compute outer cell boundaries of 3D arrangement subdivided by a given set of triangles. An outer cell boundary is defined as a 2-manifold surface consisting of subdivided polygons facing outward. Many geometric problems, such as Minkowski sum, sweep volume, lower/upper envelop, Bool operations, can be reduced to finding outer cell boundaries with specific properties. Computing outer cell boundaries, however, is a very time-consuming job and also is susceptible to numerical errors. To address these problems, we develop an algorithm based on GPU with a robust scheme combining interval arithmetic and multi-level precisions. The proposed algorithm is tested on Minkowski sum of several polygonal models, and shows 5-20 times speedup over an existing algorithm running on CPU.

Evaluation of T-stress for cracks in elastic sheets

  • Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.335-346
    • /
    • 2005
  • The T-stress of cracks in elastic sheets is solved by using the fractal finite element method (FFEM). The FFEM, which had been developed to determine the stress intensity factors of cracks, is re-applied to evaluate the T-stress which is one of the important fracture parameters. The FFEM combines an exterior finite element model with a localized inner model near the crack tip. The mesh geometry of the latter is self-similar in radial layers around the tip. The higher order Williams series is used to condense the large numbers of nodal displacements at the inner model near the crack tip to a small set of unknown coefficients. Numerical examples revealed that the present approach is simple and accurate for calculating the T-stresses and the stress intensity factors. Some errors of the T-stress solutions shown in the previous literature are identified and the new solutions for the T-stress calculations are presented.

Extension of the adaptive boundary element scheme for the problem with mixed boundary conditions

  • Kamiya, N.;Aikawa, Y.;Kawaguchi, K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.191-202
    • /
    • 1996
  • This paper presents a construction of adaptive boundary element for the problem with mixed boundary conditions such as heat transfer between heated body surface and surrounding medium. The scheme is based on the sample point error analysis and on the extended error indicator, proposed earlier by the authors for the potential and elastostatic problems, and extended successfully to multidomain and thermoelastic analyses. Since the field variable is connected with its derivative on the boundary, their errors are also interconnected by the specified condition. The extended error indicator on each boundary element is modified to meet with the situation. Two numerical examples are shown to indicate the differences due to the prescribed boundary conditions.

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.