• Title/Summary/Keyword: Numerical errors

Search Result 872, Processing Time 0.027 seconds

Estimation of maneuverability of fisheries training vessel BAEK-KYUNG using numerical simulation method (수치 시뮬레이션 방법을 이용한 어업실습선 백경호의 조종성 추정)

  • KIM, Su-Hyung;LEE, Chun-Ki;LEE, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.246-255
    • /
    • 2021
  • Most fishing vessels are less than 100 m in length (LBP), which is not mandatory for the IMO standards for ship maneuverability. Therefore, research on estimating the maneuverability of fishing vessel hull shapes are somewhat lacking compared to that of merchant ship hull shapes, and at the design stage, the numerical simulation method developed for merchant ships are applied without modification to estimate the maneuverability. Since this can cause estimation errors, the authors have derived a modified empirical formula that can improve the accuracy of estimating the maneuverability of fishing vessels in a previous study. In this study, using the modified empirical formula, the IMO maneuverability evaluation items, the turning motion test and Z-test simulations were performed on the fisheries training vessel BAEK-KYUNG and compared with the sea trial test result to verify the validity of the modified empirical formula. In conclusion, the modified empirical formula was able to estimate quantitatively and qualitatively similar to the result of the sea trial test. Such a study on estimating the maneuverability of fishing vessels will be a good indicator for fishing vessel operators and will help them analyze marine accidents.

Design charts for consolidation settlement of marine clays using finite strain consolidation theory

  • Jun, Sang-Hyun;Lee, Jong-Ho;Park, Byung-Soo;Kwon, Hyuk-Jae
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this study, design charts for estimating consolidation settlement are proposed according to finite strain consolidation theory using a nonlinear constitutive relationship equation. Results of parametric sensitivity analysis shows that the final settlement, initial height, and initial void ratio exerted the greatest effect, and the coefficients of the void ratio-effective-stress. Proposed design charts were analyzed for three regions using a representative constitutive relationship equation that enables major dredged-reclaimed construction sites in Korea. The regional design charts can be calculated accurately for the final settlement because it is applied directly to the numerical analysis results, except for reading errors. A general design chart applicable to all marine clays is proposed through correlation analysis of the main parameters. A final self-weight consolidation settlement with various initial void ratios and initial height conditions should be estimated easily using the general design chart and constitutive relationship. The estimated final settlement using the general design chart is similar to the results of numerical analysis obtained using finite strain consolidation theory. Under an overburden pressure condition, design charts for estimating consolidation settlement are proposed for three regions in Korea.

Numerical Analysis on the Resistance and Propulsion Performances of High-Speed Amphibious Assault Vehicles (고속 상륙돌격장갑차의 저항 및 추진 성능에 관한 수치 분석)

  • Kim, Taehyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.84-98
    • /
    • 2021
  • The hydrodynamic characteristics of amphibious assault vehicles are investigated using commercial CFD code, STAR-CCM+. Resistance performances of a displacement-type vehicle and a semi-planing type vehicle are analyzed in calm water. The self-propelled model is also computed for the semi-planing type vehicle. All computations are performed using an overset mesh system and a RANS based flow-solver coupled with a two-degree of freedom equations of motion. A moving reference frame is applied to simulate revolutions of impeller blades for a waterjet propulsion system. Grid dependency tests are performed to evaluate discretization errors for the mesh systems. The numerical analysis results are compared with the experimental results obtained from model tests. It is shown that RANS is capable of investigating the resistance and self-propulsion characteristics of high-speed amphibious assault vehicles. It is also found that a fully covered side skirt, which is covering tracks, reduces resistance and stern trim, besides increasing propulsive efficiency.

High fidelity transient solver in STREAM based on multigroup coarse-mesh finite difference method

  • Anisur Rahman;Hyun Chul Lee;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3301-3312
    • /
    • 2023
  • This study incorporates a high-fidelity transient analysis solver based on multigroup CMFD in the MOC code STREAM. Transport modeling with heterogeneous geometries of the reactor core increases computational cost in terms of memory and time, whereas the multigroup CMFD reduces the computational cost. The reactor condition does not change at every time step, which is a vital point for the utilization of CMFD. CMFD correction factors are updated from the transport solution whenever the reactor core condition changes, and the simulation continues until the end. The transport solution is adjusted once CMFD achieves the solution. The flux-weighted method is used for rod decusping to update the partially inserted control rod cell material, which maintains the solution's stability. A smaller time-step size is needed to obtain an accurate solution, which increases the computational cost. The adaptive step-size control algorithm is robust for controlling the time step size. This algorithm is based on local errors and has the potential capability to accept or reject the solution. Several numerical problems are selected to analyze the performance and numerical accuracy of parallel computing, rod decusping, and adaptive time step control. Lastly, a typical pressurized LWR was chosen to study the rod-ejection accident.

Verification of multilevel octree grid algorithm of SN transport calculation with the Balakovo-3 VVER-1000 neutron dosimetry benchmark

  • Cong Liu;Bin Zhang;Junxia Wei;Shuang Tan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.756-768
    • /
    • 2023
  • Neutron transport calculations are extremely challenging due to the high computational cost of large and complex problems. A multilevel octree grid algorithm (MLTG) of discrete ordinates method was developed to improve the modeling accuracy and simulation efficiency on 3-D Cartesian grids. The Balakovo-3 VVER-1000 neutron dosimetry benchmark is calculated to verify and validate this numerical technique. A simplified S2 synthetic acceleration is used in the MLTG calculation method to improve the convergence of the source iterations. For the triangularly arranged fuel pins, we adopt a source projection algorithm to generate pin-by-pin source distributions of hexagonal assemblies. MLTG provides accurate geometric modeling and flexible fixed source description at a lower cost than traditional Cartesian grids. The total number of meshes is reduced to 1.9 million from the initial 9.5 million for the Balakovo-3 model. The numerical comparisons show that the MLTG results are in satisfactory agreement with the conventional SN method and experimental data, within the root-mean-square errors of about 4% and 10%, respectively. Compared to uniform fine meshing, approximately 70% of the computational cost can be saved using the MLTG algorithm for the Balakovo-3 computational model.

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.

Numerical Investigation of Frictional Effects and Compensation of Frictional Effects in Split Hopkinson Pressure Bar (SHPB) Test (수치해석을 이용한 SHPB 시험의 마찰영향 분석과 보정에 대한 연구)

  • Cha, Sung-Hoon;Shin, Hyun-Ho;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.511-518
    • /
    • 2010
  • The split Hopkinson pressure bar (SHPB) has been widely used to determine the mechanical properties of materials at high loading rates. However, to ensure test reliability, the source of measurement error must be identified and eliminated. During the experiment, specimens were placed between the incident and the transmit bar. Contact friction between the test bars and specimen may cause errors. In this study, numerical experiments were carried out to investigate the effect of friction on the test results. In the SHPB test, the stress measured by the transmitted bar is assumed to be the flow stress of the test specimen. However, performing numerical experiments, it was shown that the stress measured by the transmit bar is axial stress components. When the contact surface is frictionless, the flow stress and axial stress of the specimen are approximately equal. On the other hand, when the contact surface is not frictionless, the flow stress and axial stress are no longer equal. The effect of friction on the difference between the flow stress and axial stress was investigated.

A Study on the Sensorless Speed Control of Permanent Magnet Direct Current Motor (영구자석 직류전동기의 센서리스 속도제어에 관한 연구)

  • Oh, Sae-Gin;Kim, Hyun-Chel;Kim, Jong-Su;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.694-699
    • /
    • 2012
  • This paper proposes a new sensorless speed control scheme of permanent magnet DC motor using a numerical model and hysteresis controller, which requires neither shaft encoder, speed estimator nor PI controllers. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing torque difference, the rotor speed approaches to the model speed, namely setting value and the system can control motor speed precisely. As the numerical model whose electric parameters are the same as those of the actual motor is adopted, the armature rotating speed can be converged to the setting value by controlling torque on both sides to be equalized. And the hysteresis controller controls torque by restricting the torque errors within respective hysteresis bands, and motor torque are controlled by the armature voltage. The experiment results indicate good speed and load responses from the low speed range to the high, show accurate speed changing performance.

Definition and Verification of the Dynamic Characteristics of the Anti-Vibration Mount for the Numerical Analysis (수치해석을 위한 방진 마운트의 동적 특성 결정 및 검증)

  • Han, Hyung-Suk;Park, Mi-Yoo;Cho, Heung-Gi;Kim, Joong-Gil;Im, Dong-Been
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3190-3195
    • /
    • 2010
  • Because the non-linear property of the rubber, the elastic modulus and damping factor of the rubber mount are dependent on the frequency. Therefore, the dynamic properties of the rubber mount should be considered when the anti-vibration mount is designed. Especially, when the numerical analysis is performed, the results can have much errors not considering the dynamic characteristics of the rubber mount. In this paper, the dynamic properties of typical standard rubber mount approved by ROK navy are defined experimentally and the results from the numerical analysis and experiment are compared for considering and non-considering the dynamic properties of the rubber mount respectively.

Parametric Study on Curved Tub Girders for Varying Radii of Curvature (곡선 개구제형 거더의 곡률에 따른 매개변수 해석연구)

  • Kim, Jong-Min;Han, Taek-Hee;Choi, Jun-Ho;Choi, Byung-Ho;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.175-188
    • /
    • 2012
  • A parametric study for varying the radii of curvature is performed with a curved tub girder bridge having three continuous spans. The bracing forces of top lateral bracings from the results of numerical equations are compared to those of 3-dimensional finite element analyses. New modifying factors applicable in computing the nominal member forces of top lateral bracings were suggested. The numerical equations were derived based on one girder system, and it is shown that the numerical equations exhibit some errors compared with 3D FEA results. The main reason for this phenomenon lies on the number of girders. The twin girder system has an external cross-beam between inner and outer girder. It also has larger lateral stiffness than the single girder system. Finally, the distributions by the torsion, bending, distortion, and lateral loading of the top lateral bracing forces were presented in this paper.