• Title/Summary/Keyword: Numerical errors

Search Result 872, Processing Time 0.032 seconds

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

초등학교 5학년 학생의 자연수 혼합계산에서 나타난 오류에 관한 연구

  • Baek, Seon-Su;Kim, Won-Kyung;Mun, Seung-Ho
    • East Asian mathematical journal
    • /
    • v.24 no.5
    • /
    • pp.547-564
    • /
    • 2008
  • The purpose of this study was to investigate 5th graders' performance for mixed operational problem. For this purpose. two kinds of studies were conducted: a descriptive study by pencil and paper tests(32 problems) and a clinical study by interviews. The conclusions drawn from the results obtained in this study were as follows: First, students were highly scored in pencil and paper tests(M=85.25%). But that score is not up to scratch. Because the problem was composed of simple calculations and if students calculate problems from only let side, they gel 75% right answer, etc. Second, most of students solved mixed operational problems by text-based way, but some students solved flexibly. There are several error types. The main error type is students' following the wrong order of calculations. Some students have obstacles to express their thought with numerical expressions. So they make errors. Third, students solve mixed operational problems with various strategies. For examples, they solve problems by describing calculation procedures, drawing lines to indicate the order of calculations, carrying out two numerical expressions, etc.

  • PDF

Errors in Potentiometric End-Point of Redox Titrations Determined by Zero Second Derivative Method (산화환원 전위차적정에 있어 수치미분법으로 얻은 영 2 차미분 종말점의 오차)

  • Q. Won Choi;Kyong Ryul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-132
    • /
    • 1978
  • The potentiometric end-point of redox titrations determined by nulling the second derivative of the titration curve by numerical differentiation method is analyzed by using an electronic digital computer. The error involved in the method is shown to be dependent on the location of the equivalence point in the titrant addition increment that encompasses the latter. The error increases as the equivalence point moves away from the mid-point of the increment toward a maximum value that is as great as a half of the increment. Therefore, when the numerical differentiation method is used to null the second derivative, the end-point should be compared with the steepest point of the titration curve or diluted titrant should be used in the vicinity of the end-point.

  • PDF

AUTOMATED TRIANGULAR SURFACE GRID GENERATION ON CAD SURFACE DATA (CAD 형상 데이터를 이용한 물체 표면 삼각형 격자의 자동 생성 기법)

  • Lee, B.J.;Kim, B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.103-107
    • /
    • 2007
  • Computational Fluid Dynamics (CFD in short) approach is now playing an important role in the engineering process recently. Generating proper grid system for the region of interest in time is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches. In this paper an automated triangular surface grid generation using CAD surface data is proposed According to the present method, the CAD surface data imported in the STL format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.

  • PDF

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

Comparison of Acceleration of Vibration Isolator and Accelerometer Attached Vibration Isolator Using Numerical Analysis (수치 해석을 이용하여 제진대와 제진대에 부착된 가속도계의 가속도 비교)

  • Shin, Dong Ho;Lee, Jung Woo;Oh, Jae-Eung;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • The process of producing high precision and light weight product is always exposed to impact load or shock. Because of this, isolator device is required. To measure the response of the isolator, accelerometer is practically used. However, the measured response of the accelerometer is different to the response of the isolator. To predict the response of the accelerometer and the isolator, 2-DOF damped system with an input shock is modeled using numerical analysis. 1-DOF damped system with a base excitation is also used to predict the response of the isolator. The mass ratio, damping ratio, and natural frequency ratio are then varied. The predicted responses from the two modeling approaches are compared and large errors are found.

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

A Numerical Study on the Behavior of Convex and Concave Slopes in Plan View (볼록 및 오목 사면 형상에 따른 거동에 대한 수치해석 모형 연구)

  • 정우철;박형동;박연준;유광호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.213-220
    • /
    • 2000
  • Numerical modeling of cut slope has some limits in simulating the real slopes. In the case of 2D analysis of slope stability, it is assumed that slope is simply straight even when it is concave or convex in plan view. In this study, 3D analysis in curved shape slopes has been conducted for the comparison with 2D analysis in terms of failure mode and factor of safety. For this, 3D analysis by FLAC3D was compared with 2D analysis in plane strain condition and axi-symmetric model condition by FLAC. It was also observed how safety factors of slopes were affected by the variation of the tensile strength and cohesion, which are important variables to decide whether the slope fails or not. 2D analysis of concave slopes under plane strain condition showed much smaller safety factors by 16-40 % errors depending on the radius of curvature of slopes, compared to the more realistic values from 3D analysis. In case of convex slopes, the lower values by 7-10 % has been reported. 2D analysis of axi-symmetric model showed also smaller safety factors by 6-10 % and by 2-4 %, in case of concave and convex slopes, respectively. Such results are expected to contribute to the better understanding of failure process and could be applied for improved design of slopes.

  • PDF

A Numerical Study on R410A Charge Amount in an Air Cooled Mini-Channel Condenser (공랭식 미소유로 응축기의 R410A 충전량 예측에 관한 수치적 연구)

  • Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.710-718
    • /
    • 2010
  • A numerical study was performed to predict refrigerant charge amount in a mini-channel condenser for a R410A residential air-conditioning system. Multi-channel flat tubes with 12 mini-channels of 1.17 mm average hydraulic diameter for each tube were applied to the condenser. The condenser consisted of 3 passes, and the first, second, and third pass had 44, 19, and 11 tubes, respectively. Each pass was connected by a vertical header. In this study, the condenser was divided into 410 finite volumes, and analyzed by an $\varepsilon$-NTU method. With thermophysical properties and void fraction models for each volume element, the R410A amount distribution and a total charge amount in the condenser were calculated. The predicted total charge amount was compared with the experimentally measured charge amount under a standard ARI A condition. The developed model could predict the charge amount in the mini-channel condenser within prediction errors from -23.9% to -3.0%. Air velocity distribution at the condenser face was considered as non-uniform and uniform by the simulation model, and its results showed that the air velocity distribution could significantly influence the charge amount and vapor phase distribution in the condenser.