• Title/Summary/Keyword: Numerical errors

Search Result 872, Processing Time 0.027 seconds

Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method - (자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석-)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF

Model Tracking Dual Stochastic Controller Design Under Irregular Internal Noises

  • Lee Jong-Bok;Cho Yun-Hyun;Ji Tae-Young;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.652-657
    • /
    • 2006
  • Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and 1/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation.

Performance Improvement of Towed Array Shape Estimation Using Interpolation (보간법을 이용한 견인 어레이 형상 추정 기법의 성능 개선)

  • 박민수;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.72-76
    • /
    • 2000
  • A calibration technique is proposed to improve the performance of 2-D towed array shape estimation using the Kalman filter. In the case of using displacement sensors, 2-D hydrophone positions estimated by the Kalman filter are calculated by assuming that the adjacent hydrophones are horizontally equi-spaced so that maximum distance is equal to the array length. The assumption causes errors in estimating hydrophone positions. The proposed technique using linear model approximation or spline interpolation can reduce the errors by exploiting the fact that the whole length of array is preserved whatever the array shape is. The numerical experiments show that the proposed method is very effective.

  • PDF

Effect of Outdated Channel Estimates on Multiple Antennas Multiple Relaying Networks

  • Wang, Lei;Cai, Yueming;Yang, Weiwei;Yan, Wei;Song, Jialei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1682-1701
    • /
    • 2015
  • In this paper, we propose an intergraded unified imperfect CSI model and investigate the joined effects of feedback delay and channel estimation errors (CEE) for two-hop relaying systems with transmit beamforming and relay selection. We derived closed-form expressions for important performance measures including the exact analysis and lower bounds of outage probability as well as error performance. The ergodic capacity is also included with closed-form results. Furthermore, diversity and coding gains based on the asymptotic analysis at high SNRs are also presented, which are simple and concise and provide new analytical insights into the corresponding power allocation scheme. The analysis indicates that delay effect results in the coding gain loss and the diversity order loss, while CEE will merely cause the coding gain loss. Numerical results verify the theoretical analysis and illustrate the system is more sensitive to transmit beamforming delay compared with relay selection delay and also verify the superiority of optimum power allocation. We further investigate the outage loss due to the CEE and feedback delays, which indicates that the effect of the CEE is more influential at low-to-medium SNR, and then it will hand over the dominate role to the feedback delay.

Accurate Calibration of Kinematic Parameters for Two Wheel Differential Drive Robots by Considering the Coupled Effect of Error Sources (이륜차동구동형로봇의 복합오차를 고려한 기구학적 파라미터 정밀보정기법)

  • Lee, Kooktae;Jung, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Odometry using wheel encoders is one of the fundamental techniques for the pose estimation of wheeled mobile robots. However, odometry has a drawback that the position errors are accumulated when the travel distance increases. Therefore, position errors are required to be reduced using appropriate calibration schemes. The UMBmark method is the one of the widely used calibration schemes for two wheel differential drive robots. In UMBmark method, it is assumed that odometry error sources are independent. However, there is coupled effect of odometry error sources. In this paper, a new calibration scheme by considering the coupled effect of error sources is proposed. We also propose the test track design for the proposed calibration scheme. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed calibration scheme.

Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling - (5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 -)

  • So, Bum-Sik;Jung, Yoong-Ho;Yun, Jae-Deuk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

Study on an USBL Positioning Algorithm in a Shallow Water Tank in Noisy Conditions (배경잡음이 존재하는 얕은 수조 내에서의 USBL 위치추적 알고리즘 적용 가능성 연구)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • It is well known fact that acoustic positioning systems are absolutely needed for various underwater operations. According to the distances between their sensors they are classified into three parts: long baseline(LBL), short baseline(SBL), and ultra-short baseline(USBL). Among them the USBL system is widely used because of its simplicity, although it is the most inaccurate. Recently, in order to increase the positioning accuracy, various USBL systems using broadband signal such as MFSK(Multiple Frequency Shift Keying) are produced. However, their positioning accuracy is still limited by background noise and reflected waves. Therefore, there is difficulty in applying the USBL system using MFSK signal in a shallow water with noisy conditions. In order to examine the effect of the noise and wave reflections this paper analyze position errors for various conditions using numerical simulations. The simulation results say that tile SNR must be greater than 20dB and errors in the vertical direction are slightly increased by wave reflections by upper and lower boundaries.

  • PDF

Orbit Prediction using Broadcast Ephemeris for GLONASS Satellite Visibility Analysis (GLONASS 위성 가시성 분석을 위한 방송궤도력 기반 궤도 예측)

  • Kim, Hye-In;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.199-210
    • /
    • 2009
  • Even though there are several Global Navigation Satellite Systems under development, only GPS and GLONASS are currently available for satellite positioning. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration. For accuracy validation, predicted orbits were compared with precise ephemeris. The RMS(Root Mean Square) and maximum 3-D errors were 14.3 km and 17.4 km for one-day predictions. In case of 7-day predictions, the RMS and maximum 3-D errors were 15.7 and 40.1 km, respectively. Also, the GLONASS satellite visibility predictions were compared with real observations, and they agree perfectly except for several epochs when the satellite signal was blocked by nearby buildings.

Studies on the Development of Three-Demensional Positioning System and Numerical Modeling of Fish Behavior I. Three-Demensional Positioning System for Investigating Fish Behavior (3차원 어군행동 계측 시스템의 개발과 어군행동의 수직 모델링에 관한 연구 1 . 3차원 어군행동 계측 시스템 -)

  • 김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • In order to investigate the fish behavior in the water tank, the three dimensional positioning system with two CCD cameras was designed. The positioning system was tested at the vertical circulation water channel with observational part of 1,500L$\times$1,500W$\times$500H mm and the circular water tank with 2,050ø sub(1)$\times$1,850ø sub(2)$\times$400H mm. The observational error of vertical direction was larger than that of horizontal direction, and the observational error became enlarged in all directions according to the increase of depth and distance from the visual axis. The maximum observational errors of horizontal and vertical directions at the circulation channel ranged from -1.7 cm to 1.8 cm (2.4%) and zero to 2.1 cm (4.2%), respectively. But the errors of horizontal and vertical directions at the circular tank ranged from -1.3 cm to 1.3 cm (1.3%) and zero to 1.3 cm (3.3%), respectively.

  • PDF

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.