• 제목/요약/키워드: Numerical errors

검색결과 866건 처리시간 0.024초

Analysis on load-bearing contact characteristics of face gear tooth surface wear with installation errors

  • Fan Zhang;Xian-long Peng
    • Computers and Concrete
    • /
    • 제31권2호
    • /
    • pp.163-171
    • /
    • 2023
  • Face gear transmission is widely used in aerospace shunt-confluence transmission system. Tooth wear is one of the main factors affecting its bearing transmission performance. Furthermore, the installation errors of face gear are inevitable. In order to study the wear mechanism of face gear tooth surface with installation errors, based on tooth contact analysis numerical method and Archard wear theory, the UMESHMOTION subroutine in ABAQUS is developed.Combining with Arbitrary Lagrangian-Eulerian adaptive mesh technology, the finite element mesh wear model of abraded face gear pair is established.The preprocessing conditions are set to generate the inp files.Then,the inp files for each corner are imported and batch processed in ABAQUS.The loading tooth contact problem at each rotation angle is solved and the load distribution coefficient among gear tooth, tooth root bending stress, tooth surface contact stress and loaded transmission error are obtained. Results show that the tooth root wear is the most serious and the wear at the pitch cone is close to 0.The wear law of tooth surface along tooth width direction is convex parabola and the wear law along tooth height direction is concave parabola.

2-Dimensional Model Development for Water Quality Prediction

  • Paik, Do-Hyeon
    • 한국환경보건학회지
    • /
    • 제31권6호
    • /
    • pp.489-497
    • /
    • 2005
  • A numerical method for the mathematical water modeling in 2-dimensional flow has been developed. The model based on a split operator technique, in which, the advection term is calculated using the upwind scheme. The diffusion term is one- dimensionalized and calculated using Crank-Nicholson's implicit finite difference scheme to reduce the numerical errors from large time steps and variable spacings. It also provides a relatively simple and economic method for more accurate simulation of pollutant dispersion. Water depths and flow velocities in the Boreyong reservoir during the normal water periods were predicted by numerical experiments with a 2-dimensional flow model so as to provide current field data for the study of advection and diffusion of pollutants. Developed 2-dimensional water quality model is applied to Boreyong reservoir to simulate a spatial and periodical changes of water quality.

LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (III) -동적 오차 해석 - (On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Simulations (III) - Dynamic Error Analysis -)

  • 박노마;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.995-1006
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a dynamic analysis. Large eddy simulation of isotropic turbulence is performed with various dissipative and non-dissipative schemes to investigate the effect of numerical dissipation on the resolved solutions. It is shown by the present dynamic analysis that upwind schemes reduce the aliasing error and increase the finite differencing error. The existence of optimal upwind scheme that minimizes total numerical error is verified. It is also shown that the finite differencing error from numerical dissipation is the leading source of numerical errors by upwind schemes. Simulations of a turbulent channel flow are conducted to show the existence of the optimal upwind scheme.

3차원 입체요소를 사용한 정밀 전자부품의 사출성형 해석 (Numerical Analysis for Injection Molding of Precision Electronics Parts Using Three-Dimensional Solid Elements)

  • 박근;박제현;최상련
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.414-422
    • /
    • 2002
  • Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. In some cases, that approximation causes significant errors due to loss of geometrical information as well as simplification of the flow characteristics along the thickness direction. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the classical shell-based approach. The Proposed approach is then applied to predict product defects and to improve flow characteristics for a precision electronics part. In addition, design of experiment has been utilized in order to find the optimal process conditions for better product quality.

3차원 입체요소를 사용한 정밀 전자부품의 사출성형해석 (Numerical Analysis for Injection Molding of Precision Electronics Parts using Three-Dimensional Solid Elements)

  • 박근;박제현;최상련
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.68-75
    • /
    • 2002
  • Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. In some cases, that approximation causes significant errors due to loss of geometrical information as well as simplification of the flow characteristics along the thickness direction. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the classical shell-based approach. The proposed approach are then applied to predict product defects and to improve flow characteristics for a precision electronics part. In addition, design of experiment has been utilized in order to find the optimal process conditions for better product quality.

  • PDF

토폴로지와 수치적 정확도를 통합한 기하모델링에 관한 연구: 곡면간 교차선 (A Study on Unifying Topology and Numerical Accuracy in Geometric Modeling: Surface to Surface Intersections)

  • 고광희
    • 한국CDE학회논문집
    • /
    • 제12권5호
    • /
    • pp.344-353
    • /
    • 2007
  • In this paper, we address the problem of robust geometric modeling with emphasis on surface to surface intersections. We consider the topology and the numerical accuracy of an intersection curve to find the best approximation to the exact one. First, we perform the topological configuration of intersection curves, from which we determine the starting and ending points of each monotonic intersection curve segment along with its topological structure. Next, we trace each monotonic intersection curve segment using a validated ODE solver, which provides the error bounds containing the topological structure of the intersection curve and enclosing the exact root without a numerical instance. Then, we choose one approximation curve and adjust it within the bounds by minimizing an objective function measuring the errors from the exact one. Using this process, we can obtain an approximate intersection curve which considers the topology and the numerical accuracy for robust geometric modeling.

Numerical Simulation of the Flat Die for Shape Optimization in the Single-screw Extrusion Process

  • Joon Ho Moon;See Jo Kim
    • Elastomers and Composites
    • /
    • 제57권4호
    • /
    • pp.147-156
    • /
    • 2022
  • In this study, we chose a flat die to optimize a general die geometry. The optimization was aimed at obtaining a uniform velocity distribution across the exit of the die. For the optimization, the input and output design parameters were randomly computed, and response surfaces were generated to obtain statistical data for the minimum and maximum sensitivities computed during optimization. Subsequently, object functions with constraints were numerically computed to obtain the minimum errors in the velocity difference (i.e., variable "Outp" in this study). Finally, we obtained the candidate optimized dataset. Note that the current numerical computations were simultaneously conducted for an entire extruder, i.e., screw plus die. The numerical outlet velocity distributions in the modified die geometry tended to be much more uniform than the conventional distributions in the current optimization processes for this specific flat die.

Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구 (Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method)

  • 김사엽;오윤중;박성욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

수정된 밀도함수법을 이용한 Spilling Breaker의 수치시뮬레이션 (Numerical Simulation of Spilling Breaker using the Modified Marker-density Method)

  • 정광열;이영길
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.58-66
    • /
    • 2014
  • Numerical simulations for the flows containing free surface remain difficult problems because the drastic differences of physical properties of water and air, The difference of densities makes the solution instable in particular. For the stabilities of the solutions, the most typical methods to simulate free surface flows, such as Volume Of Fluid(VOF) and Level-Set(LS) methods, impose transient zones where the physical prosperities are continuously distributed. The thickness of the transient zone is the source of the numerical errors. The other side, marker-density method does not use such a transient zone. In the traditional marker-density method, however, the air velocities of free surface cells are extrapolated from the water velocity, and the pressures on the free surface are extrapolated from the air pressures for the stability of the solution. In this study, the marker-density method is modified for the decrease of such numerical errors. That is, the pressure on the free surface is determined to coincide with the pressure gradient terms of the governing equations, and the velocity of free surface cells are calculated with the governing equations. Two-dimensional steady spilling breakers behind of a submersed hydrofoil and three-dimensional spilling breaker near a wedge shaped ship model are simulated using INHAWAVE-II including the modified marker-density(MMD) method. The results are compared with the results of Fluent V6.3 including VOF method and several published research results.

다방향 입사파의 쌍곡형 수치모형에 의한 포항신항내 항내정온도 분석 (Analysis of Harbor Tranquility in Pohang New Harbor Using a Hyperbolic Model with Multi-Directional Incoming Waves)

  • 정원무;이창훈;채장원
    • 한국해안해양공학회지
    • /
    • 제9권2호
    • /
    • pp.97-104
    • /
    • 1997
  • 포한신항내 2개 정점에서의 현장관측자료와 수치실험 결과를 비교·검증하여 쌍곡형 수치모형의 적용성을 검토하였다. 단일 방향 규칙파를 입사파 조건으로 사용한 경우 정점 P2, P3에서 관측치와의 오차가 각각 약 12,26%로 제시되었으며, 다방향 성분파를 입사파 조건으로 사용한 경우 2개 정점에서의 오차가 각각 약 4,16%로 나타나 대략 9% 개선된 결과를 얻었다. 포항신항의 1994년의 평면 배치와 제4 투기장 완공후의 평면 배치에 대하여 다방향 성분파를 입사파 조건으로 하여 항내정온도의 개선 상태를 평가하였다. 그 결과, 제4 투기장계획에서 연장된 200m의 북방파제만으로는 제7 부두에서 하역불능시간이 긴 문제를 해결하기가 어려울 것으로 사료된다.

  • PDF