• Title/Summary/Keyword: Numerical dispersion

Search Result 586, Processing Time 0.032 seconds

A Study on the Numerical Radiation Condition in the Steady Wave Problem (정상파 문제의 방사조건에 관한 연구)

  • Lee, Gwang-Ho;Jeon, Ho-Hwan;Seong, Chang-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

Analysis of Salinity Dispersion in Estuaries by an X-Y Numerical Model (X-Y 수치모형에 의한 하구의 염도확산 분석)

  • 강주환;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.197-208
    • /
    • 1991
  • A depth-averaged X-Y numerical model with transformed coordinates is developed to analyze the salinity dispersion in estuaries. Simulation of intertidal zones, residual current and closed boundary condition are examined. Especially. the improvements in stability and accuracy of the numerical algorithm are made by adopting fractional step method for the dispersion term of the governing equation. The model being applied to the Keum River Esturary, velocity fields and salinity fields are reproduced satisfactorily and the estimation of the dispersion coefficient with respect to the flow fold is also studied.

  • PDF

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

Numerical Dispersion Relation for the 2-D ADI-FDTD Method (2-D ADI-FDTD의 수치적 분산특성에 관한 연구)

  • 주세훈;김형동
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.181-186
    • /
    • 2003
  • This paper presents a numerical dispersion relation for the two-dimensional finite-difference time-domain method based on the alternating-direction implicit time-marching scheme(2-D ADI-FDTD), which method has the potential to considerably reduce tile number of time iterations especially in case where the fine spatial lattice relative to the wavelength is used to resolve fine geometrical features. The proposed analytical relation for 2-D ADI-FDTD is compared with those relations in the Previous works. Through numerical tests, the dispersion equation of this work was shown as correct one for 2-D ADI-FDTD.

Downward and Upward Air Flow Effects on Fume Particle Dispersion in Laser Line Cutting of Optical Plastic Films

  • Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In improving laser cutting of optical plastic films for mass production of optoelectronics display units, it is important to understand particle contamination over optical film surface due to fume particle generation and dispersion. This numerical study investigates the effects of downward and upward air flow motions on fume particle dispersion around laser cut line. The simulations employ random particle sampling of up to one million fume particles by probabilistic distributions of particle size, ejection velocity and angle, and fume particle dispersion and surface landing are predicted using Basset-Boussinesq-Oseen model of low Reynolds number flows. The numerical results show that downward air flow scatters fume particles of a certain size range farther away from laser cut line and aggravate surface contamination. However, upward air flow pushes fume particles of this size range back toward laser cut line or sucks them up with rising air motion, thus significantly alleviating surface contamination.

Modified Scheme for Tsunami Propagation with Variable Water Depths

  • Ha, Tae-Min;Seo, Kyu-Hak;Kim, Ji-Hun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.471-476
    • /
    • 2011
  • In this study, a modified dispersion-correction scheme describing tsunami propagation on variable water depths is proposed by introducing additional terms to the previous numerical scheme. The governing equations used in previous tsunami propagation models are slightly modified to consider the effects of a bottom slope. The numerical dispersion of the proposed model replaces the physical dispersion of the governing equations. Then, the modified scheme is employed to simulate tsunami propagation on variable water depths and numerical results are compared with those of the previous tsunami propagation model.

Modulation Instability in Dispersion and Gain Managed Fibers (이득과 분산을 조절한 광섬유의 변조 불안정성 분석)

  • Choi, Byung-Hoon;Kim, Sang-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.93-99
    • /
    • 2007
  • We investigated analytically and numerically the occurrence of modulation instability in fibers with periodic changes both in dispersion and gain. Previously, it has been known that the modulation instability is suppressed in dispersion managed solitons where dispersion is managed in such a way that the local dispersion alternates between the normal and the anomalous regimes. In this work, we enhanced the advantage of the dispersion management scheme by additionally introducing proper gain/loss profiles in fibers. The gain/loss profile is given by $\Gamma(z)=0.5/D(z)*(dD/dz)$, where D(z) represents the dispersion profile. The fundamental gain spectra of the modulation instability in the dispersion and gain managed fibers have been derived analytically and confirmed by numerical calculation. Our investigation reveals that in the dispersion and gain fibers the modulation instabilities are always much more suppressed compared to the case with only dispersion managed. In practical dispersion management schemes, dispersion profiles show discontinuity. and thus. the corresponding gain/loss profiles tend to be finite. In these cases, the gain/loss profiles were approximated by lumped gains/losses of finite values. Our numerical calculations confirm that this approximation also works well.

Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation (LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구)

  • Kim, Tae-Jin;Seo, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF

Dispersion-Correction of 1-D Finite Element Model for Tsunami Propagation Using Explicit Scheme (양해법을 이용한 일차원 지진해일 전파 유한요소모형의 분산보정)

  • 윤성범;임채호;윤기승;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 2004
  • Wave lengths of tsunamis are shorter than those of tides, and the dispersion effect of tsunamis is relatively strong. Thus, it should be properly considered in the numerical simulation of distant tsunami propagation for better accuracy. In the present study an active dispersion-correction scheme using explicit scheme is developed to take into account the dispersion effect in the simulation of tsunami propagation using one-dimensional finite element method based on wave equation. The validity of the dispersion-correction scheme proposed in this study is confirmed through the comparision of numerical solutions calculated using the present scheme with analytical ones considering dispersion effect of waves.

NUMERICAL SOLUTIONS FOR ONE AND TWO DIMENSIONAL NONLINEAR PROBLEMS RELATED TO DISPERSION MANAGED SOLITONS

  • Kang, Younghoon;Lee, Eunjung;Lee, Young-Ran
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.835-847
    • /
    • 2021
  • We study behavior of numerical solutions for a nonlinear eigenvalue problem on ℝn that is reduced from a dispersion managed nonlinear Schrödinger equation. The solution operator of the free Schrödinger equation in the eigenvalue problem is implemented via the finite difference scheme, and the primary nonlinear eigenvalue problem is numerically solved via Picard iteration. Through numerical simulations, the results known only theoretically, for example the number of eigenpairs for one dimensional problem, are verified. Furthermore several new characteristics of the eigenpairs, including the existence of eigenpairs inherent in zero average dispersion two dimensional problem, are observed and analyzed.