• 제목/요약/키워드: Numerical approximation

검색결과 1,034건 처리시간 0.02초

고속도로 통행량 예측을 위한 새로운 동적 알고리즘 (A New Dynamic Prediction Algorithm for Highway Traffic Rate)

  • 이광연;박기섭
    • 한국시뮬레이션학회논문지
    • /
    • 제29권3호
    • /
    • pp.41-48
    • /
    • 2020
  • 본 논문에서는 고속도로 통행량을 보다 정확하게 예측하기 위한 새로운 방법으로 통행량에 대한 누적분포함수를 이용한 동적 예측 알고리즘을 제시한다. 여기서 누적분포함수의 근사함수를 수치적 방법인 내츄럴 큐빅 스플라인(natural cubic spline) 보간법과 레벤버그-마쿼트(Levenberg-Marquardt) 방법을 통해 얻는다. 이 알고리즘은 금융수학에서 활용하는 누적 분포함수를 이용한 난수 생성 알고리즘을 통행량 예측에 알맞도록 새롭게 구조화한 것이다. 이 알고리즘으로 고속도로 통행량을 시뮬레이션하면 실제 통행량과 매우 흡사한 결과를 얻을 수 있음을 확인할 수 있다. 따라서 이 알고리즘은 고속도로뿐만 아니라 통행량 예측이 필요한 다양한 분야에서 활용할 수 있는 새로운 알고리즘이다.

선체수평진동(船體水平振動)에 있어서의 부가질량(附加質量) 3차원수정계수(次元修正係數) (Three Dimensional Correction Factors for the Added Mass in the Horizontal Vibration of Ships)

  • 김극천;유병건
    • 대한조선학회지
    • /
    • 제11권1호
    • /
    • pp.9-16
    • /
    • 1974
  • To contribute towards more accurate estimation of the virtual inertia coefficient for the horizontal vibration of ships, three dimensional correction factor $J_H$ for the added mass of finitely long elliptic prismatic bars in horizontal vibration in a free surface of an ideal fluid are calculated. In the problem formulation Dr. T. Kumai's quasi-finite length concept[1,11,12] is employed. Now that, in Dr. Kumai's work[1] for the horizontal vibration the mathematical model was a circular cylinder, the principal aim of the authors' work is to investigate the influence of the beam-draft ratio B/T on $J_H$. The numerical results of this work are shown in Fig.3 graphically, from which we may recognize that the influence of B/T on $J_H$ is remarkable as much as that of the length-draft ratio L/T(refer to Fig.1 also). In Fig.3 the curves for B/T=2.00 are of those based on Dr. Kumai's result[1]. On the other hand, the experimental data obtained by Burril et al.[9] for the horizontal vibration of finitely long prismatic bars of various cross-section shapes are compared with the theoretical added mass coefficients defined by combination of the authors' $J_H$ from Fig.3 and two dimensional coefficients $C_H$ obtained by Lewis form approximation for the corresponding sections. They are in reasonable correspondence with each other as shown in Fig.2. Finally, considering that the longitudinal profile of full-form ship's hull is well resembled to that of an elliptic cylinder and that the influences of other factors such as the sectional area coefficient and the shape of section contour itself can be well merged in the two dimensional added mass coefficient, the authors recommend that the data given in Fig.3 may be successfully adopted for the three dimensional correction factor the added mass in the horizontal vibration of hull-form ships.

  • PDF

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

Numerical simulation of electrokinetic dissipation caused by elastic waves in reservoir rocks

  • Zhang, Xiaoqian;Wang, Qifei;Li, Chengwu;Sun, Xiaoqi;Yan, Zheng;Nie, Yao
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.11-20
    • /
    • 2019
  • The use of electrokinetic dissipation method to study the fluid flow law in micro-pores is of great significance to reservoir rock microfluidics. In this paper, the micro-capillary theory was combined with the coupling model of the seepage field and the current field under the excitation of the harmonic signal, and the coupling theory of the electrokinetic effect under the first-order approximation condition was derived. The dissipation equation of electrokinetic dissipation and viscous resistance dissipation and its solution were established by using Green's function method. The physical and mathematical models for the electrokinetic dissipation of reservoir rocks were constructed. The microscopic mechanism of the electrokinetic dissipation of reservoir rock were theoretically clarified. The influencing factors of the electrokinetic dissipation frequency of the reservoir rock were analyzed quantitatively. The results show that the electrokinetic effect transforms the fluid flow profile in the pores of the reservoir from parabolic to wavy; under low-frequency conditions, the apparent viscosity coefficient is greater that one and is basically unchanged. The apparent viscosity coefficient gradually approaches 1 as the frequency increases further. The viscous resistance dissipation is two orders of magnitude higher than the electrokinetic effect dissipation. When the concentration of the electrolyte exceeds 0.1mol/L, the electrokinetic dissipation can be neglected, while for the electrolyte solution (<$10^{-2}M$) in low concentration, the electrokinetic dissipation is very significant and cannot be ignored.

Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

  • Wong, K.L.;Chuan, M.W.;Chong, W.K.;Alias, N.E.;Hamzah, A.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.209-221
    • /
    • 2019
  • Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • 제27권5호
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes

  • Heidari, Farshad;Taheri, Keivan;Sheybani, Mehrdad;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.533-545
    • /
    • 2021
  • What is desirable in engineering is to bring the engineering model as close to reality as possible while the simplicity of model is also considered. In recent years, several studies have been performed on nanocomposites but some of these studies are somewhat far from reality. For example, in many of these studies, the carbon nanotubes (CNTs) are assumed completely straight, flawless and uniformly distributed throughout the matrix but by studying nanocomposites, we find that this is not the case. In this paper, three steps have been taken to bring the presented models for nanocomposites closer to reality. One is that assuming the straightness of nanotubes is removed and the waviness is considered. Also, the nanotubes are not considered to be pristine and the influence of defect is included in accordance with reality. In addition, the approximation of uniform distribution of nanotubes is ignored and according to experimental observations, the effect of nanotube aggregation is considered. As far as we know, this is the first study on these three topics together in an article. Moreover, we also include the size effects in our models for nanocomposites. To show the accuracy of our models, our results are calibrated with experimental results and compared with theoretical model. For numerical examples, we present the buckling behaviors of nanocomposites including the size effects using nonlocal theory and compare the results of our models with the results of models with above-mentioned approximations.

Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

  • Chuan, M.W.;Wong, Y.B.;Hamzah, A.;Alias, N.E.;Sultan, S. Mohamed;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.213-221
    • /
    • 2022
  • Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.

연속적인 단일 산란 근사를 이용한 2차원 양방향 포물선 방정식 알고리즘 (2D Two-Way Parabolic Equation Algorithm Using Successive Single Scattering Approach)

  • 이근화
    • 한국음향학회지
    • /
    • 제25권7호
    • /
    • pp.339-345
    • /
    • 2006
  • 본 논문에서는 다중 산란 현상을 해석할 수 있는 2차원 양방향 포물선 방정식 알고리즘을 제안했다. 본 논문에서 제안한 방법은 단일 산란 근사의 연속적인 적용에 바탕을 두고 있다. 각각의 거리 독립 구역의 수직 경계에 연속 조건을 적용하여 단일 산란 근사와 Split-Step Pade 법으로 거리 방향으로 전진해 가며 외향파를 계산하고 내향파 성분은 저장한다. 이어서 저장된 내향파 성분을 역 거리 방향으로 역 전파 시키고 경계에서 외향파 성분을 저장한다. 이러한 과정을 전진 방향을 바꾸어 가며 해가 수렴할 때까지 반복하여 완전 해를 계산한다. 본 논문에서 제안된 방법은 기존의 방법 [J. F. Lingevitch et al., 5. Accost. Soc. Am. 112(2), 476-480 (2002)] 에 비해 수치적으로 구현하기 간단하며 전산자원 소모가 적다.