• 제목/요약/키워드: Numerical and experimental results

검색결과 5,615건 처리시간 0.037초

스크린도어가 설치된 지하철에서 열차운행에 의한 비정상유동의 실험 및 수치적 해석 (Experimental and Numerical Analyses of Unsteady Tunnel Flow in Subway Equiped with Platform Screen Door System)

  • 김정엽;김광용
    • 설비공학논문집
    • /
    • 제18권2호
    • /
    • pp.103-111
    • /
    • 2006
  • To optimize the ventilation and smoke control systems in subway equipped with platform screen door, the technology to analyze the unsteady tunnel flow caused by running of train should be developed. The development of model experiment and numerical analysis technique with relation to unsteady flow of subway were presented. The pressure and air velocity changes in 1/20-scaling experiment unit were measured and results were comparied to those of 3-D unsteady numerical analysis applied with sharp interface method. The experimental and numerical results were quantitatively similar and it would be reasonable to apply sharp interface method to analyze the unsteady flow in subway equipped with platform screen door.

수치조파기에 의해 생성되는 2차원 파도의 유한차분 시뮬레이션 (Finite Difference Simulation of Two-dimensional Waves Generated by Numerical Wavemaker)

  • 이영길;김강신
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 2003
  • Unsteady two-dimensional nonlinear waves which are generated by the numerical wavemaker of plunging type are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Marker-density function method is adopted for the simulation of wave breaking phenomena, and the computations are carried out with various wave amplitudes and two section shapes of wavemaker. The computation results are compared with other existing computational and experimental results, and the agreement between the experimental data and the computation results is good.

  • PDF

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

유연 우주구조물의 열적 유기 진동에 관한 연구 (A Study on Thermally-Induced Vibration of Flexible Space Structures)

  • 공창덕;오경원
    • 한국항공우주학회지
    • /
    • 제31권9호
    • /
    • pp.46-54
    • /
    • 2003
  • 본 연구의 목적은 유연 우주구조물이 급격한 열적 환경에 의해 발생되는 진동을 수치적인 계산과 실험을 통해 규명하는데 있다. 단순화한 유연 구조물에 대해 수치적인 접근과 지상 실험실에서 실험한 데이터를 비교 분석하였다. 분석결과 유연 구조물이 급속한 복사 열에 의해 열적 모멘트에 의한 열적 변위가 발생하고 온도의 미소한 주기적 변화로 열 유기 진동이 발생함이 밝혀졌다. 수치해석치와 실험치를 비교한 결과 끝단질량이 없는 경우, 1차 모드 진동수는 0.78Hz로 두 값이 일치하였으나, 끝단 질량이 있는 경우, 끝단 질량이 각각 8g, 16g, 50g, 100g으로 증가할 때 1차 모드의 진동수에 있어 예측치는 1.75Hz, 1.3Hz, 0.87Hz, 0.73Hz이고 실험치는 2.34Hz, 1.5Hz, 0.78Hz, 0.78Hz로 감소하는 경향을 보이며 비록 예측치가 단순화 공식을 이용함에도 불구하고 실험치에 근접하였다.

$CH_{4}$ 제트 화염의 NOx 배출 특성에 관한 수치 및 실험적 연구 (Numerical and Experimental Investigation on NOx Emission Characteristics of $CH_4$ Jet Flame)

  • 박정배;김종현;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.67-76
    • /
    • 2000
  • Experimental and numerical investigation on NOx emission characteristics with equivalence ratios, fuel flow rates and nozzle diameters were studied in CH4 Jet flames. Emission indices of NOx were measured by chemiluminescent method with carbon converter. Numerical analyses were carried out with GRl-2.11 mechanism that includes C2-chemistry and all of NO reaction mechanisims. The roles of thermal NO and prompt NO mechanism on each flame's NOx emission index were investigated. The results of this study show that the numerical results represent well the trends of ElNOx experimentally observed. The numerical analyses clarified the trends of EINOx with equivalence ratios, fuel flow rates and nozzle diameters.

  • PDF

누설자속탐상의 수치해석 (Numerical Analysis of Magnetic Flux Leakage Inspection)

  • 이향범;김신
    • 비파괴검사학회지
    • /
    • 제21권5호
    • /
    • pp.485-492
    • /
    • 2001
  • 본 논문에서는 누설자속탐상에 대한 전자기 수치해석을 수행하였다. 수치해석방법으로 2차원 유한요소법을 이용하였다. 자기벡터포텐셜을 미지수호 사용하였으며, 자기비선형(磁氣非線型)을 고려한 자장해석을 수행하여 자기포화에 의한 영향을 고려하였다. 수치해석 결과를 검증하기 위하여 실험장치를 자체 제작하여 실험을 수행하였다 시료로는 SM 45C 탄소강을 사용하였으며, 표면에 몇 가지 결함을 생성하였다. 시편과 실험장치를 이용하여 결함을 검출하는 비파괴검사를 수행하였다. 결함의 깊이 변화 및 결함의 형상변화에 대하여 결과를 비교 검토하였다. 수치해석 및 실험에서 유사한 결과를 얻었으며, 수치해석을 통하여 누설자속탐상의 시뮬레이션이 가능함을 보였다.

  • PDF

Numerical and Experimental Investigations of Dynamic Stall

  • Geissler, Wolfgang;Raffel, Markus;Dietz, Guido;Mai, Holger
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.19-19
    • /
    • 2009
  • Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.

  • PDF

Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression

  • Tian, Wen-Ling;Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.541-560
    • /
    • 2017
  • In this research, experimental and numerical simulations were adopted to investigate the effects of ligament angle on compressive strength and failure mode of rock-like material specimens containing two non-coplanar filled fissures under uniaxial compression. The experimental results show that with the increase of ligament angle, the compressive strength decreases to a nadir at the ligament angle of $60^{\circ}$, before increasing to the maximum at the ligament angle of $120^{\circ}$, while the elastic modulus is not obviously related to the ligament angle. The shear coalescence type easily occurred when ${\alpha}$ < ${\beta}$, although having the same degree difference between the angle of ligament and fissure. Numerical simulations using $PFC^{2D}$ were performed for flawed specimens under uniaxial compression, and the results are in good consistency with the experimental results. By analyzing the crack evolution process and parallel bond force field of rock-like material specimen containing two non-coplanar filled fissures, we can conclude that the coalescence and propagation of crack are mainly derived from parallel bond force, and the crack initiation and propagation also affect the distribution of parallel bond force. Finally, the displacement vectors in ligament region were used to identify the type of coalescence, and the results coincided with that obtained by analyzing parallel bond force field. These experimental and numerical results are expected to improve the understanding of the mechanism of flawed rock engineering structures.

경동맥에서 혈액유동의 수치해석 및 실험적 관찰 (Numerical Simulation and Experimental Observation of Blood Flows in the Carotid Artery)

  • 유상신;서상호;정태섭;조민태
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.41-44
    • /
    • 1995
  • A numerical technique is employed to simulate the flow patterns in the human carotid artery and a phantom of the carotid artery made of acrylic material is used to observe the flow phenomena in the carotid artery. For numerical analysis the idealized geometric shape of the carotid artery is constructed to portray the phantom. Steady momentum equation is solved by the finite element method and the numerical results are compared with the results of MRA and color Doppler images.

  • PDF

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.