• 제목/요약/키워드: Numerical and experimental results

검색결과 5,615건 처리시간 0.033초

Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes

  • Tian, Li;Fu, Zhaoyang;Pan, Haiyang;Ma, Ruisheng;Liu, Yuping
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.513-522
    • /
    • 2019
  • A long-span transmission tower-line system is indispensable for long-distance electricity transmission across a large river or valley; hence, the failure of this system, especially the collapse of the supporting towers, has serious impacts on power grids. To ensure the safety and reliability of transmission systems, this study experimentally and numerically investigates the collapse failure of a 220 kV long-span transmission tower-line system subjected to severe earthquakes. A 1:20 scale model of a transmission tower-line system is constructed in this research, and shaking table tests are carried out. Furthermore, numerical studies are conducted in ABAQUS by using the Tian-Ma-Qu material model, the results of which are compared with the experimental findings. Good agreement is found between the experimental and numerical results, showing that the numerical simulation based on the Tian-Ma-Qu material model is able to predict the weak points and collapse process of the long-span transmission tower-line system. The failure of diagonal members at weak points constitutes the collapse-inducing factor, and the ultimate capacity and weakest segment vary with different seismic wave excitations. This research can further enrich the database for the seismic performance of long-span transmission tower-line systems.

Flexural behaviour of reinforced concrete beams with silica fume and processed quarry fines

  • Priya, T. Shanmuga;Senthilkumar, R.
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 2020
  • This paper studies the influence of silica fume and Processed Quarry Fines (PQF) on the flexural behaviour of the reinforced concrete beams by experimental as well as numerical studies. The study has been shown that the incorporation of PQF can significantly increase the stiffness and the flexural strength of reinforced HPC beams. Also, the ultimate strength of specimens prepared with the 10% silica fume and 100% PQF are higher compared to conventional reinforced concrete specimen. Numerical analysis is performed to find the ultimate strength of HPC beams to compare with experimental results. Nonlinear behaviour of steel reinforcing bars and plain concrete is simulated using appropriate constitutive models and experimental results. The results indicate that the ultimate strength, deformed shape and crack patterns of reinforced HPC beams obtained through the Finite Element Analysis (FEA) are confirming with the experimental results.

Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs

  • Qiao, Wentao;Huang, Zhiyuan;Yan, Xiaoshuo;Wang, Dong;Meng, Lijun
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.219-230
    • /
    • 2022
  • The aim of this paper is to study the mechanical behaviors of the cold-formed thin-walled steel and reinforced concrete sandwich composite slab (CTS&RC-SCS) under vertical loads and to develop the calculation methods of its flexural bearing capacity and section stiffness. Two CTS&RC-SCS specimens were designed and manufactured to carry out the static loading test, and meanwhile, the numerical simulation analyses based on finite element method were implemented. The comparison between experimental results and numerical analysis results shows that the CTS&RC-SCS has good flexural capacity and ductility, and the accuracy and rationality of the numerical simulation analysis are verified. Further, the variable parameter analysis results indicate that neither increasing the concrete strength grade nor increasing the thickness of C-sections can significantly improve the flexural capacity of CTS&RC-SCS. With the increase of the ratio of longitudinal bars and the thickness of the composite slab, the flexural capacity of CTS&RC-SCS will be significantly increased. On the basis of experimental research and numerical analysis above, the calculation formula of the flexural capacity of CTS&RC-SCS was deduced according to the plastic section design theory, and section stiffness calculation formula was proposed according to the theory of transformed section. In terms of the ultimate flexural capacity and mid-span deflection, the calculated values based on the formulas and the experimental values are in good agreement.

The effects of stiffener configuration on stiffened T-stubs

  • Ozkılic, Yasin Onuralp
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.489-502
    • /
    • 2022
  • The stiffeners, also known as ribs, are utilized to increase the resistance of T-stubs. The author's previous studies showed that stiffeners can increase plastic capacity by an average of 1.71 times. A combined experimental and numerical study was undertaken to examine the effects of the stiffener configuration on the behavior of T-stubs. A total of 20 stiffened T-stubs where the shape and angle of stiffeners were considered as the main parameters were tested under monotonic loading. Rectangular, triangular and AISC types of stiffener were tested under monotonic loading. The experimental results indicated that when the height of the stiffener is equal to or higher than the length of the stiffener, the shape of the stiffener does not have an influence on the behavior. A numerical study using the finite element tool ABAQUS was carried out in order to further investigate the effects of the stiffener shapes. In this case, the height is considered less than the length of the stiffener. Moreover, the shape of the stiffeners was investigated with the different thicknesses of the stiffener. The simulation findings revealed that when the height of the stiffener is less than the length of the stiffener, the shape of the stiffener significantly affects the plastic capacity. Based on the numerical and experimental results, it is recommended to use the triangular shape of the stiffener when height is equal to or higher than the length of the stiffener while it is recommended to utilize the rectangular shape of the stiffener when height is less than the length of the stiffener.

대칭복합적층평판의 좌굴해석 (Buckling Analysis of Symmetrically Laminated Composite Plates)

  • 원종진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.260-264
    • /
    • 1997
  • The experimental and numerical results of buckling loads for symmetrically laminated composite plates are compared. Boundary conditions are all fixed supports. Experiments were conducted for plates with fiber angles $\theta$=30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$ and aspect ratios a/b=0.8. Experimental results were obtained from load-deflection curves. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF

복합적층평판의 좌굴해석 (Buckling Analysis of Laminated Composite Plates)

  • 원종진
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.23-28
    • /
    • 1998
  • In this paper, the experimental and numerical results of buckling loads for laminated composite plates are compared. Using boundary conditions of buckling test are all fixed supports. Experiments were conducted for plates with fiber angles $ heta$=30$^{\circ}$, 45$^{\circ}$,60$^{\circ}$ and aspect ratio a/b=0.8. Experimental results were obtained from load-deflection curves of buckling test. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF

CPV 냉각용 열분산기 모듈의 열성능에 관한 실험적 연구 (Experimental Investigation on the Thermal Performance of a Heat Spreader Module for the CPV Cooling)

  • 도규형;한용식;최병일;김명배
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.95-102
    • /
    • 2011
  • In this paper, the thermal performance of a heat spreader module for CPV(Concentrating Photovoltaic) cooling is experimentally investigated. In order to evaluate the thermal performance of the heat spreader module which consists of a Metal PCB and an aluminum alloy heat spreader, experiments are conducted with varying the type of the metal PCB, the thickness of the heat spreader, the inclination angle, and the applied heat flux. To validate the experimental data, three dimensional numerical simulations are performed using the commercial simulation tool in the present work. The experimental results are compared with the corresponding numerical results and are in close agreement with the numerical results. From the experimental results, the temperature difference between the maximum temperature and the ambient temperature increases with decreasing the thickness of the heat spreader and with increasing the applied heat flux. Also, it is found that the inclination angle significantly affects the thermal performance of the heat spreader. the maximum temperature difference of the heat spreader with the horizontal orientation is much larger than that with the vertical orientation.

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

FEA of the blast loading effect on ships hull

  • Hamdoon, Muhsin;Zamani, Nader;Das, Sreekanta
    • Ocean Systems Engineering
    • /
    • 제1권3호
    • /
    • pp.223-239
    • /
    • 2011
  • In combat operations, naval ships may be subjected to considerable air blast and underwater shock loads capable of causing severe structural damage. As the experimental study imposes great monetary and time cost, the numerical solution may provide a valuable alternative. This study emphasises on numerical analysis for optimization of stiffened and unstiffened plate's structural response subjected to air blast load. Linear and non linear finite element (FE) modeling and analysis was carried out and compared with existing experimental results. The obtained results reveal a good agreement between numerical and experimental observations. The presented FE models can eliminate confusion regarding parameters selection and FE operations processing, using commercial software available currently.

빙-해저지반 상호작용을 고려한 빙쇄굴 시뮬레이션 비교연구 (Comparative Study of Ice Gouge Simulation Considering Ice Keel-Seabed Interactions)

  • 신문범;박동수;서영교
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.556-563
    • /
    • 2019
  • The ice keel gouge and seabed interaction is one of the major considerations in the design of an Arctic pipeline system. Ice keel and seabed interaction engineering models based on experimental data, which give an explicit equation for estimating the ice gouging depth, have been suggested. The suggested equations usually overestimate the ice keel gouging depth. In addition, various types of numerical analyses have been carried out to verify the suggested engineering model equations in comparison to the experimental data. However, most of numerical analysis results were also overestimated compared with the laboratory experimental data. In this study, a numerical analysis considering the contact condition and geostatic stress was carried out to predict the ice keel gouging depth and compared with the previous studies. Considering the previously mentioned conditions, more accurate results were produced compared with the laboratory experiment results and the error rate was reduced compared to previous numerical analysis studies.