• 제목/요약/키워드: Numerical analysis method

검색결과 9,742건 처리시간 0.036초

준해석적 비선형 설계민감도를 위한 개선된 변위하중법 (Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

준해석 설계민감도를 위한 변위하중법 (Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis)

  • 유정훈;김흥석;이태희
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

다층 지반의 2차원 압밀 수치해석 II (2-D Consolidation Numerical Analysis of Multi_Layered Soils (II))

  • 류권일;김팔규;구기욱;남상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.665-672
    • /
    • 2000
  • The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D,M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground Explicit method is simple for analysis algorithm and convenient for use except for applying the operator Crank-Nicolson method represents implicit method, which have different analysis method according to weighting factor. This method uses different algorithm according to dimension. And, this paper uses alternative direction implicit method. The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

동적 신뢰성 해석 기법의 수치 안정성에 관하여 (On the Numerical Stability of Dynamic Reliability Analysis Method)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.49-57
    • /
    • 2020
  • In comparison with the existing static reliability analysis methods, the dynamic reliability analysis(DyRA) method is more suitable for estimating the failure probability of a structure subjected to earthquake excitations because it can take into account the frequency characteristics and damping capacity of the structure. However, the DyRA is known to have an issue of numerical stability due to the uncertainty in random sampling of the earthquake excitations. In order to solve this numerical stability issue in the DyRA approach, this study proposed two earthquake-scale factors. The first factor is defined as the ratio of the first earthquake excitation over the maximum value of the remaining excitations, and the second factor is defined as the condition number of the matrix consisting of the earthquake excitations. Then, we have performed parametric studies of two factors on numerical stability of the DyRA method. In illustrative example, it was clearly confirmed that the two factors can be used to verify the numerical stability of the proposed DyRA method. However, there exists a difference between the two factors. The first factor showed some overlapping region between the stable results and the unstable results so that it requires some additional reliability analysis to guarantee the stability of the DyRA method. On the contrary, the second factor clearly distinguished the stable and unstable results of the DyRA method without any overlapping region. Therefore, the second factor can be said to be better than the first factor as the criterion to determine whether or not the proposed DyRA method guarantees its numerical stability. In addition, the accuracy of the numerical analysis results of the proposed DyRA has been verified in comparison with those of the existing first-order reliability method(FORM), Monte Carlo simulation(MCS) method and subset simulation method(SSM). The comparative results confirmed that the proposed DyRA method can provide accurate and reliable estimation of the structural failure probability while maintaining the superior numerical efficiency over the existing methods.

불연속지반의 연속체 모델 적용범위에 대한 수치해석적 연구 (A Study on Application Range of Continuum Model to Discontinuous Rock mass with Numerical Analysis)

  • 이경우;노상림;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.197-204
    • /
    • 2002
  • In this study, multivariate analysis based on domestic data(958 EA) of road tunnel, and suggest the easy prediction equation of Q-system. We generate applicable Q-value to numerical analysis method with using the equation and investigate the behavior as variable Q-value of rock mass induced excavation with discontinuum numerical analysis method, UDEC. In the result of the experiment, we research the application range of Q-value to apply the continuum model to discontinuous rock mass is below 0.7 and we testify the applicability of continuum model as researched Q-value with continuum numerical analysis method, FLAC.

  • PDF

준해석적 비선형 설계민감도를 위한 보정변위하중법 (Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method

  • J.R., Cho
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.723-731
    • /
    • 2022
  • Functionally graded materials (FGMs) have been spotlighted as an advanced composite material, accordingly the intensive studies have focused on FGMs to examine their mechanical behaviors. Among them is thermal buckling which has been a challenging subject, because its behavior is connected directly to the safety of structural system. In this context, this paper presents the numerical analysis of thermal buckling of metal-ceramic functionally graded (FG) plates. For an accurate and effective buckling analysis, a new numerical method is developed by making use of (1,1,0) hierarchical model and 2-D natural element method (NEM). Based on 3-D elasticity theory, the displacement field is expressed by a product of 1-D assumed thickness monomials and 2-D in-plane functions which are approximated by NEM. The numerical method is compared with the reference solutions through the benchmark test, from which its numerical accuracy has been verified. Using the developed numerical method, the critical buckling temperatures of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

Muskingum-Cunge 홍수추적 방법의 오차해석 (Error Analysis of Muskingum-Cunge Flood Routing Method)

  • 김대근;서일원
    • 한국수자원학회논문집
    • /
    • 제36권5호
    • /
    • pp.751-760
    • /
    • 2003
  • 시간 및 공간가중치를 고정하지 않는 Muskingum-Cunge 홍수추적방법에 대한 오차해석을 수행하였다. 오차해석 결과 시간가중치와 공간가중치의 합이 1.0이상인 경우에는 홍수파가 진행하면서 증폭되어 수치해가 발산하였다. 시간가중치와 공간가중치의 합이 작을수록 수치확산이 크게 발생하였다. 격자의 해상도가 낮을수록 수치확산 및 수치진동이 크게 발생하였다. 수치실험과 자연하천에 대한 적용 결과, 공간가중치를 고정하지 않는 경우에는 공간가중치를 0.5로 고정하는 전통적인 Muskingum-Cunge방법보다 첨두의 감쇄가 큰 홍수파 모의에 효과적임을 알 수 있었다.

다층 지반의 2차원 압밀 수치해석 (2-D Consolidation Numerical Analysis of Multi_Layered Soils)

  • 김팔규;류권일;남상규;이재식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.467-474
    • /
    • 2000
  • The application of Terzaghi's theory of consolidation for analysing the settlement of multi-layered soils is not strictly valid because the theory involves an assumption that the soil is homogeneous. The settlement of stratified soils with confined aquifer can be analysed using numerical techniques whereby the governing differential equation is replaced by 2-dimensional finite difference approximations. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D.M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M) which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF