• Title/Summary/Keyword: Numerical algorithm

Search Result 4,147, Processing Time 0.031 seconds

Iterative Image Restoration Based on Wavelets for De-Noising and De-Ringing (잡음과 오류제거를 위한 웨이블렛기반 반복적 영상복원)

  • Lee Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.271-280
    • /
    • 2004
  • This paper presents a new iterative image restoration algorithm with removal of boundary/object-oriented ringing, The proposed method is based on CGM(Conjugate Gradient Method) iterations with inter-wavelet shrinkage. The proposed method provides a fast restoration as much as CGM, while having adaptive do-noising and do-ringing by using wavelet shrinkage. In order to have effective do-noising and do-ringing simultaneously, the proposed method uses a space-dependent shrinkage rule. The improved performance of the proposed method over more traditional iterative image restoration algorithms such as LR(Lucy-Richardson) and CGM in do-noising and do-ringing is shown through numerical experiments.

  • PDF

Simulation of Energy Conversion Characteristics of OMACON LM-MHD Systems (OMACON형 LM-MHD 시스템에서의 에너지전환특성 시뮬레이션)

  • 김창녕
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.1-14
    • /
    • 1997
  • The characteristics of the flow and energy conversion in OMACON liquid-metal MHD system are investigated. Numerical simulation of two-phase flow in the OMACON system without magnetic field was carried out by the Phoenics code and the energy conversion characteristics are studied in association with the fact that the mechanical energy loss at the nozzle of the OMACON system are to be converted into electrical energy. In this system, working fluid (gas) is injected through the mixer located at the bottom of the riser, and is mixed with hot liquid metal. Therefore in the riser two-phase flow is developed under the influence of the gravity. In this study, the interaction between the gas and liquid is considered by the use of IPSA(InterPhase Slip Algorithm) where standard drag coefficient has been used. It has been assumed that in the flow regime the liquid is continuous and the gas is dispersed. For the liquid and gas, the continuity equations, momentum equations and energy equations are solved respectively in association with void fraction in the flow field. In order to calculate the energy conversion efficiency, firstly the ratio of the mechanical energy loss of liquid metal flow at the nozzle to the input thermal energy is considered. Secondly flow pattern of liquid metal in the generator has been analyzed, and the characteristics of the conversion of the mechanical energy into the electrical energy has been investigated. For an representative case where Hartmann number is 540 and magnetic field is 0.35 T, the present analysis shows that the energy conversion efficiency is 0.653. This result is considered to be reasonable in comparison with published experimental results.

  • PDF

A Chaos Control Method by DFC Using State Prediction

  • Miyazaki, Michio;Lee, Sang-Gu;Lee, Seong-Hoon;Akizuki, Kageo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The Delayed Feedback Control method (DFC) proposed by Pyragas applies an input based on the difference between the current state of the system, which is generating chaos orbits, and the $\tau$-time delayed state, and stabilizes the chaos orbit into a target. In DFC, the information about a position in the state space is unnecessary if the period of the unstable periodic orbit to stabilize is known. There exists the fault that DFC cannot stabilize the unstable periodic orbit when a linearlized system around the periodic point has an odd number property. There is the chaos control method using the prediction of the $\tau$-time future state (PDFC) proposed by Ushio et al. as the method to compensate this fault. Then, we propose a method such as improving the fault of the DFC. Namely, we combine DFC and PDFC with parameter W, which indicates the balance of both methods, not to lose each advantage. Therefore, we stabilize the state into the $\tau$ periodic orbit, and ask for the ranges of Wand gain K using Jury' method, and determine the quasi-optimum pair of (W, K) using a genetic algorithm. Finally, we apply the proposed method to a discrete-time chaotic system, and show the efficiency through some examples of numerical experiments.

The Numerical Simulation of Flow Field and Heat Transfer around 3-D Tube Banks (3차원 튜브 뱅크 주위의 난류 유동장 및 열전달에 대한 수치 해석적 연구)

  • Park, S.K.;Kim, K.W.;Ryou, H.S.;Choi, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.375-385
    • /
    • 1996
  • Turbulent flow and heat transfer characteristics around staggered tube banks were studied using the 3-D Navier-Stokes equations and energy equation governing a steady incompressible flow, which were reformulated in a non-orthogonal coordinate system with cartesian velocity components and discretized by the finite volume method with a non-staggered variable arrangement. The predicted turbulent kinetic energy using RNG $k-{\varepsilon}$ model was lower than that of standard $k-{\varepsilon}$ model but showed same result for mean flow field quantities. The prediction of the skin friction coefficient using RNG $k-{\varepsilon}$ model showed better trend with experimental data than standard $k-{\varepsilon}$ model result. The inclined flow showed higher velocity and skin friction coefficient than transverse flow because of extra strain rate ($\frac{{\partial}w}{{\partial}y}$). Also, this was why the inclined flow showed higher local heat transfer coefficient than the transverse flow.

  • PDF

Design of Control Algorithm for Mass Driving Anti-Rolling System Considering Control Input Constraint (제어 입력포화를 고려한 횡동요 저감장치용 제어알고리듬 설계)

  • Moon, Seok-Jun;Lim, Chae-Wook;Lee, Hae-Jong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.566-574
    • /
    • 2005
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MO-ARS) might be one candidate of several systems against the ship's rolling. As the movable range of the mass on the ship is finite, the control system must include restriction on the mass position to protect the device and the ship. This restriction usually causes windup phenomenon and control performance is deteriorated seriously. Two control algorithms, anti-windup control and saturated sliding mode control, are studied in this paper. Control performance and robustness problem are checked out by numerical simulations.

Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling - (5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 -)

  • So, Bum-Sik;Jung, Yoong-Ho;Yun, Jae-Deuk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

THEORETICAL ANALYSIS FOR STUDYING THE FRETTING WEAR PROBLEM OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT

  • LEE CROON YEOL;CHAI YOUNG SUCK;BAE JOON WOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.201-206
    • /
    • 2005
  • Fretting, which is a special type of wear, is defined as small amplitude relative motion along the contacting interface between two materials. The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element model that can simulate fretting wear on the secondary side of the steam generator was developed and used for a quantitative investigation of the fretting wear phenomenon. Finite element modeling of elastic contact wear problems was performed to demonstrate the feasibility of applying the finite element method to fretting wear problems. The elastic beam problem, with existing solutions, is treated as a numerical example. By introducing a control parameter s, which scaled up the wear constant and scaled down the cycle numbers, the algorithm was shown to greatly reduce the time required for the analysis. The work rate model was adopted in the wear model. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate cross tubes contacting at right angles. The wear constant of Inconel 690 in the work rate model was taken as $K=26.7{\times}10^{-15}\;Pa^{-1}$ from experimental data obtained using a fretting wear test rig with a piezoelectric actuator. The analyses revealed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.

Study on an USBL Positioning Algorithm in a Shallow Water Tank in Noisy Conditions (배경잡음이 존재하는 얕은 수조 내에서의 USBL 위치추적 알고리즘 적용 가능성 연구)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • It is well known fact that acoustic positioning systems are absolutely needed for various underwater operations. According to the distances between their sensors they are classified into three parts: long baseline(LBL), short baseline(SBL), and ultra-short baseline(USBL). Among them the USBL system is widely used because of its simplicity, although it is the most inaccurate. Recently, in order to increase the positioning accuracy, various USBL systems using broadband signal such as MFSK(Multiple Frequency Shift Keying) are produced. However, their positioning accuracy is still limited by background noise and reflected waves. Therefore, there is difficulty in applying the USBL system using MFSK signal in a shallow water with noisy conditions. In order to examine the effect of the noise and wave reflections this paper analyze position errors for various conditions using numerical simulations. The simulation results say that tile SNR must be greater than 20dB and errors in the vertical direction are slightly increased by wave reflections by upper and lower boundaries.

  • PDF

Design Method Development of Smart TMD for Retractable-Roof Spatial Structure (개폐식 대공간 구조물을 위한 스마트 TMD 설계기법 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.107-115
    • /
    • 2017
  • In this paper, a structural design method of a smart tuned mass damper (TMD) for a retractable-roof spatial structure under earthquake excitation was proposed. For this purpose, a retractable-roof spatial structure was simplified to a single degree of freedom (SDOF) model. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. This condition was considered in the numerical simulation. A magnetorheological (MR) damper was used to compose a smart TMD and a displacement based ground-hook control algorithm was used to control the smart TMD. The control effectiveness of a smart TMD under harmonic and earthquake excitation were evaluated in comparison with a conventional passive TMD. The vibration control robustness of a smart TMD and a passive TMD were compared along with the variation of natural period of a simplified structure. Dynamic responses of a smart TMD and passive TMD under resonant harmonic excitation and earthquake load were compared by varying mass ratio of TMD to total mass of the simplified structure. The design procedure proposed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

SUSSING MERGER TREES : THE IMPACT OF HALO MERGER TREES ON GALAXY PROPERTIES IN A SEMI-ANALYTIC MODEL

  • Lee, Jaehyun;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2014
  • Halo merger trees are essential backbones of semi-analytic models for galaxy formation and evolution. Recent studies have pointed out that extracting merger trees from numerical simulations of structure formation is non-trivial; different algorithm can give differing merger histories. Thus they should be carefully understood before being used as input for models of galaxy formation. As one of the projects proposed in the SUSSING MERGER TREES Workshop, we investigate the impact of different halo merger trees on a semi-analytic model. We find that the z = 0 global galaxy properties in our model show differences between trees when using a common parameter set, but that these differences are not very significant. However, the star formation history of the Universe and the properties of satellite galaxies can show marked differences between trees with different methods for constructing a tree. Calibrating the SAM for each tree individually to the empirical data can reduce the discrepancies between the z = 0 global galaxy properties, however this is at cost of increasing the differences in evolutionary histories of galaxies. Furthermore, the underlying physics implied can vary, resulting in key quantities such as the supernova feedback efficiency differing by factors of 2. Such a change alters the regimes where star formation is primarily suppressed by supernovae. Therefore, halo merger trees extracted from a common halo catalogue using different, but reliable, algorithms can result in a difference in the semi-analytic model, however, given the enormous uncertainties in galaxy formation physics, these are not necessarily significant.

  • PDF