• Title/Summary/Keyword: Numerical Visualization

Search Result 428, Processing Time 0.032 seconds

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Behavior Patterns and Visualization by Playing Experience in FPS Game (FPS게임의 플레이경험에 따른 행동패턴과 시각화)

  • Choi, GyuHyeok;Kim, Mijin
    • Journal of Korea Game Society
    • /
    • v.16 no.4
    • /
    • pp.35-44
    • /
    • 2016
  • To apply the player's experiences to the design process of the game levels set by the developer, gameplay behavior analysis is needed. The player's behavior which is different by how much he got experiences from the play has generally been studied by one computational approach based on numerical data and the other HCI(human-computer interaction) approach through heuristic analysis. For the analysis of the player's behavior with the level design patterns in FPS(first-person shooter) games, in this paper those methods are used to code 12 main types of action, which in turn is simply categorized into 5 kinds of behavior pattern. Along with it, an optimized visualization is proposed to intuitively compare the flow of behavior pattern with the time of playing game.

Numerical study on pressure drop with moving contact lines of dry slug flow in a hydrophobic minichannel (소수성 미니채널 내 움직이는 접촉선을 가진 액체슬러그의 압력 강하에 대한 수치해석)

  • Jeon, Jun Ho;Park, Su Chung;Yu, Dong In;Kim, Tae Hun;Lee, Yeon Won
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.116-121
    • /
    • 2020
  • In this study, a single-phase analysis of droplet slug with different contact angles was performed based on the visualization of experimental results. Droplet slug - flowing between gases in a hydrophobic mini channel - moves with a triple contact line without a gas liquid film on the wall. The results show that the rotational flow inside the droplet occurred; this was compared and verified with the results of two-phase analysis. The pressure field shows pressure rise at the front and rear ends. The effective length - the section that satisfies the laminar flow condition - became shorter as the droplet velocity increased. The Choi's correlation for the effective length agrees with this analysis results with a slight difference. This difference is judged as the difference in the contact angle of the slug model.

Flow characteristics validation around drain hole of fan module in refrigerator (냉장고 팬 모듈의 물빠짐 구멍 주변 유동 특성 검증)

  • Jinxing, Fan;Suhwan, Lee;Heerim, Seo;Dongwoo, Kim;Eunseop, Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.102-108
    • /
    • 2022
  • In the fan module of the intercooling refrigerator, a drain hole structure was designed for stable drainage of defrost water. However, the airflow passing through the drain hole can disturb flow features around the evaporator. Since this backflow leads to an increase in flow loss, the accurate experimental and numerical analyses are important to understand the flow characteristics around the fan module. Considering the complex geometry around the fan module, three different turbulence models (Standard k-ε model, SST k-ω model, Reynolds stress model) were used in computational fluid dynamics (CFD) analysis. According to the quantitative and qualitative comparison results, the Standard k-ε model was most suitable for the research object. High-accuracy results well match with the experiment result and overcome the limitation of the experiment setup. The method used in this study can be applied to a similar research object with an orifice outflow driven by a rotating blade.

Hydrodynamic Analysis of Rectangular Sieve Tray under Weeping Conditions (위핑 유동 조건에서의 직사각형 체 주위 유동의 수력학적 분석)

  • Uwitonze, Hosanna;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • Within fractionating devices existing in separation and purification industries, sieve trays are widely used as tower internals and their choice is due to economical attractiveness. While operating a trayed distillation tower weeping phenomenon has a critical effect on the efficiency, in this case study a weeping phenomenon was undertaken by means of numerical model in a rectangular sieve tray. Eulerian-Eulerian Computational Fluid Dynamics (CFD) method was used and the obtained CFD results are in a good agreement with the experimental data in terms of weeping rate and pressure drop.

An Experimental Study on Swirling Flow in a 90 Degree Circular Section Tube (원형단면을 갖는 90$^{\circ}$ 곡관내의 선회유동에 관한 실험적 연구)

  • Chang Tae-Hyun;Lee Hae Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 2003
  • The study of swirl flow has been of technical and scientific interest because it has an internal recirculation field and its tangential velocity is related to the curvature of the streamline. The fluid flow for ducts or elbows of an internal engine has been much studied through numerical methods and experiments, but studies about swirl flow has been insufficient. Using the PIV (Particle Image Velocimetry) method, this study found the time-mean velocity distribution, time-mean turbulent intensity, with swirl and without swirl flow for Re=10,000, 15,000, 20,000, and 25,000 along longitudinal sections and the results appear to be physically reasonable. In addition, axial velocity distribution is compared with that of Jeong's, Kodadadi's and Murakami's. It was found that the highest velocity of swirl and non-swirl flow occurs in the opposite position at the center of a round tube, $\phi$=45$^{\circ}$

  • PDF

The Flow Analysis of Virtual Channel depending upon the change of two ingates

  • Kim, Nam-Hyeong;Kim, Gyeong-Bo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1636-1640
    • /
    • 2006
  • SMAC method, one of the computational fluid dynamics techniques, is modified from the original MAC method for the time-dependent variation of flow analysis. The Navier-Stokes equations for incompressible time-dependent viscous flow are applied, and also marker particles that present the visualization of flow analysis are used. In this study SMAC technique is used to analyze the flow behavior in the water-filling of virtual channel. Then by changes of diameter of two ingates, the change of velocity and discharge when two ingates are filled the water to virtual channel are simulated. As a result, water-filling flow pattern in the virtual channel is simulated very well. Therefore, this numerical simulation will also be applied for the design of structures as open flume and porous breakwater.

  • PDF

Design and Evaluation of a Uniform Flow Microreactor (균일 유동 마이크로 반응기의 설계와 검증)

  • Park, Ji-Min;Yi, Seung-Jae;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.29-34
    • /
    • 2010
  • This paper proposes a design method to provide uniform flow in a microreactor. Uniform momentum approach is adopted with 10 pillars before and after the chamber having a different slope inlet channel. The slope and number of pillars are two factors to make a uniform flow in the microreactor, covering the hexagonal gold layer. The CFD analysis about the designed microreactor is carried out and the velocity vector field measurements are made in the fabricated microreactor by micro PIV technique. The uniformity of microreactor flow was confirmed by both numerical simulation and experimental results.

Visualization of American Options Using the Roll-Geske-Whaley Model

  • Chew Shu Ling Belinda;Sherlyn, Chen-Wanhui;Fei, Tan-Toh;Edmond C. Prakash;Edmund M-K. Lai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.106.1-106
    • /
    • 2001
  • American options no doubt is invariably more popular than European options, due to the fact that it gives the owner the option to exercise a contract before and up to the expiration date, unlike an European option, which only allows the owner to exercise a contract on the date of expiration. Owing to its popularity, many methods like the binomial numerical method and the pseudo American method have been devised for computing of the value of the American options. The aim of this research is to develop an effective 3-dimensional visualization for American option portfolio based on the Geske-Roll-Whaley model. It is obvious that it is extremely tedious and unadvisable for researchers to interprte chunks of data by looking at graphs or pie charts, which are simple but not effective for analyzing important dta. Hence, the generation of the Geske-Roll-Whaley ...

  • PDF