• 제목/요약/키워드: Numerical Integration Time Step

검색결과 83건 처리시간 0.019초

Highly accurate family of time integration method

  • Rezaiee-Pajand, Mohammad;Esfehani, S.A.H.;Karimi-Rad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.603-616
    • /
    • 2018
  • In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

Solving Dynamic Equation Using Combination of Both Trigonometric and Hyperbolic Cosine Functions for Approximating Acceleration

  • Quoc Do Kien;Phuoc Nguyen Trong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.481-486
    • /
    • 2005
  • This paper introduces a numerical method for integration of the linear and nonlinear differential dynamic equation of motion. The variation of acceleration in two time steps is approximated as a combination of both trigonometric cosine and hyperbolic cosine functions with weighted coefficient. From which all necessary formulae are elaborated for the direct integration of the governing equation. A number of linear and nonlinear dynamic problems with various degrees of freedom are analysed using both the suggested method and Newmark method for the comparison. The numerical results show high advantages and effectiveness of the new method.

The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions

  • Shojaee, S.;Rostami, S.;Moeinadini, A.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.211-229
    • /
    • 2011
  • In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom (SDOF) systems. In the proposed approach, a straightforward formulation was derived from the approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is demonstrated with four examples. The results were compared with those from the numerical methods such as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy exactly like the Linear Acceleration method. But its power point is that its time consumption is notably less than the Linear Acceleration method especially in the nonlinear analysis.

Formulation, solution and CTL software for coupled thermomechanics systems

  • Niekamp, R.;Ibrahimbegovic, A.;Matthies, H.G.
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.1-25
    • /
    • 2014
  • In this work, we present the theoretical formulation, operator split solution procedure and partitioned software development for the coupled thermomechanical systems. We consider the general case with nonlinear evolution for each sub-system (either mechanical or thermal) with dedicated time integration scheme for each sub-system. We provide the condition that guarantees the stability of such an operator split solution procedure for fully nonlinear evolution of coupled thermomechanical system. We show that the proposed solution procedure can accommodate different evolution time-scale for different sub-systems, and allow for different time steps for the corresponding integration scheme. We also show that such an approach is perfectly suitable for parallel computations. Several numerical simulations are presented in order to illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical speed-up of parallel computations, which follow from the adequate choice of the time step for each sub-problem. This work confirms that one can make the most appropriate selection of the time step with respect to the characteristic time-scale, carry out the separate computations for each sub-system, and then enforce the coupling to preserve the stability of the operator split computations. The software development strategy of direct linking the (existing) codes for each sub-system via Component Template Library (CTL) is shown to be perfectly suitable for the proposed approach.

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

리어 힌지 패널 스템핑의 유한요소해석 (Finite Element Analysis of Auto-body Panel Stamping)

  • 정동원;이장희;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.97-109
    • /
    • 1996
  • In the present work computations are carried out for analysis of complicated sheet metal forming process such as forming of a rear hinge. Finite element formulation using dynamic explicit time integration scheme and step-wise combined Implicit/Explicit scheme are introduced for numerical analysis of sheet metal forming process. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. The explicit scheme in general use is based on the elastic-plastic modelling of material requiring large computation time. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme employs a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explicit scheme the problem of convergency is eliminated at the cost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implicit/explicit scheme has been developed.

실시간 Co-Simulation을 위한 FMI 기반 시간관리 기법 (An FMI-based Time Management Scheme for Real-time Co-Simulation)

  • 경동구;조인휘;김원태
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.426-434
    • /
    • 2020
  • CPS의 대규모 시뮬레이션을 연동하기 위한 표준으로 FMI가 연구되고 있다. FMI를 이용한 대규모 시뮬레이션에서 결과의 신뢰성을 보장하기 위해 시간관리 기법을 통한 이벤트 처리가 필요하다. 본 논문은 CPS와 같은 대규모 Co-Simulation 환경에서 실시간성과 정확성을 보장하도록 한다. 실시간성을 보장하기 위해 Wallclock time과 Simulation time을 동기화한다. 또한 정확성을 보장하기 위해 시뮬레이션을 진행하기 전에 이벤트 여부를 확인한 후, 이벤트 발생시간까지 실시간성을 유지하면서 최대한 작은 step size로 시뮬레이션을 진행한다. 그 결과 Co-Simulation 환경에서 발생하는 이벤트를 순차적으로 즉시 처리하였으며, 실시간성을 보장함과 동시에 시뮬레이션 해상도를 최대로 하여 수치적분 에러를 최소화한다. 실험에서 제안하는 기법은 이벤트 처리가 즉시 이루어졌으며, 해상도를 보장하지 않는 기존의 시간관리 기법과 달리 수치적분 에러가 1/5가량 감소하는 것을 확인하였다.

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF

페트로프-갤러킨 자연요소법을 이용한 비선형 동해석 (Nonlinear Dynamic Analysis using Petrov-Galerkin Natural Element Method)

  • 이홍우;조진래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.474-479
    • /
    • 2004
  • According to our previous study, it is confirmed that the Petrov-Galerkin natural element method (PGNEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem.

  • PDF