• 제목/요약/키워드: Numerical Analysis Model

검색결과 7,870건 처리시간 0.038초

Numerical investigation of the buckling behavior of thin ferrocement stiffened plates

  • Koukouselis, Apostolos;Mistakidis, Euripidis
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.391-410
    • /
    • 2015
  • One of the most common applications of ferrocement is the manufacturing of thin stiffened plates which are prone to buckling. This study focuses on the investigation of the behavior of a ferrocement plate, stiffened in both directions by means of an appropriate grid of ribs. In the present paper detailed three-dimensional numerical Finite Element models are formulated for the simulation of the behavior of the structure under study, which are able to take into account both the geometric and material non-linearities that are present in the subject at hand (plasticity, cracking, large displacements). The difference among the formulated models lies on the use of different types of finite elements. The numerical results obtained by each model are compared and the most efficient model is determined. Finally, this model is in the sequel used for the further investigation of the effect of different parameters on the ultimate load capacity, such as the initial out-of-plane imperfection of the plate and the interaction between the axial loads in both directions.

복합재료 거동특성의 파괴해석 II - 비선형 유한요소해석 (A Progressive Failure Analysis Procedure for Composite Laminates II - Nonlinear Predictive Finite Element Analysis)

  • 이규세
    • 복합신소재구조학회 논문집
    • /
    • 제5권4호
    • /
    • pp.11-17
    • /
    • 2014
  • A progressive failure analysis procedure for composite laminates is completed in here. An anisotropic plastic constitutive model for fiber-reinforced composite material is implemented into computer program for a predictive analysis procedure of composite laminates. Also, in order to describe material behavior beyond the initial yield, the anisotropic work-hardening model and subsequent yield surface are implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS). The accuracy and efficiency of the anisotropic plastic constitutive model and the computer program PACS are verified by solving a number of various fiber-reinforced composite laminates with and without geometric discontinuity. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.

OPTIMIZED NUMERICAL ANNULAR FLOW DRYOUT MODEL USING THE DRIFT-FLUX MODEL IN TUBE GEOMETRY

  • Chun, Ji-Han;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.387-396
    • /
    • 2008
  • Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code.

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

The effects of LNG-tank sloshing on the global motions of FLNG system

  • Hu, Zhi-Qiang;Wang, Shu-Ya;Chen, Gang;Chai, Shu-Hong;Jin, Yu-Ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.114-125
    • /
    • 2017
  • This paper addresses a study of inner-tank sloshing effect on motion responses of a Floating Liquefied Natural Gas (FLNG) system, through experimental analysis and numerical modeling. To investigate hydrodynamic characteristics of FLNG under the conditions of with and without LNG-tank sloshing, a series of numerical simulations were carried out using potential flow solver SESAM. To validate the numerical simulations, model tests on the FLNG system was conducted in both liquid and solid ballast conditions with 75% tank filling level in height. Good correlations were observed between the measured and predicted results, proving the feasibility of the numerical modeling technique. On the verified numerical model, Response Amplitude Operators (RAOs) of the FLNG with 25% and 50% tank filling levels were calculated in six degrees of freedom. The influence of tank sloshing with varying tank filling levels on the RAOs has been presented and analyzed. The results showed that LNG-tank sloshing has a noticeable impact on the roll motion response of the FLNG and a moderate tank filling level is less helpful in reducing the roll motion response.

지면조건에 따른 코트 스포츠화 착지 충격력의 전달특성 수치해석 (Numerical Analysis of Impact Force Transfer Characteristics of Court Sport Shoes to Surface Condition)

  • 류성헌;최주형;김성호;부진후;조진래
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1974-1981
    • /
    • 2004
  • This paper is concerned with the numerical investigation of the transfer characteristics of the landing impact force exerted on court sport shoes to the sport surface condition. The reaction force occurred by the impact between court sport shoes and sport surface is absorbed by shoes to some extent, but the remaining impact force is to transfer the human body from the sole of a foot. We consider four surface conditions, asphalt, urethane, clay and wood court surfaces. For the dynamic response analysis, we construct a coupled leg-shoes FEM model and create the multi-layered composite surface model. The numerical simulations are performed by an explicit nonlinear finite element method. Through the numerical experiments, we examine the transfer characteristics of the landing impact force to the surface condition.

희생양극법에 의한 발전소 복수기의 음극방식효과에 대한 수치해석 (Numerical Analysis of Cathodic Protection Effect by Sacrificial Anode Attached to Condenser of Power Plant)

  • 김장순;배병홍;김의현;이충근;김종영
    • 한국재료학회지
    • /
    • 제5권7호
    • /
    • pp.842-849
    • /
    • 1995
  • 희생양극법에 의한 발전소 복수기 수실의 음극방식 효과를 수치해석을 이용하여 알아보았다. 복수기는 해수설비중의 하나로 여러 재질로 구성되어 있는데 방식을 하지 않은 경우 수실과 tubesheet와의 갈바닉 부식이 심하게 발생되며, 수실벽과 갈바닉 부식이 심하게 일어나는 부위에 희생양극을 부탁하면 많은 방식효과가 있음을 알 수 있었다. 수치해석 결과의 타당성 검토로서 model test를 행한 결과 수치해석 결과와 실험치가 잘 일치하였다

  • PDF

맥동연소기 도관에서의 열전달 해석 (An Analysis of Heat Transfer in the Flue Tube of a Pulse Combustor)

  • 김창기;차상명;박희용
    • 설비공학논문집
    • /
    • 제4권1호
    • /
    • pp.20-32
    • /
    • 1992
  • A numerical solution for heat transfer in the flue tube of a pulse combustion water heater was presented. The $k-{\varepsilon}$ turbulent model was adopted to describe turbulent characteristics and radiative heat transfer was calculated by P-N approximation. Three pulsating conditions equivalent to existing experimental studies were used for analysis. Pulsating pressure was specified at the inlet and outlet of flue tube and numerical procedure using control volume method and pressure boundary condition was presented. It was found that the present mathematical model and numerical method could predict effectively the flow field and heat transfer for the flue tube in pulse combustor.

  • PDF

Buckling analysis of functionally graded plates resting on elastic foundation by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.171-181
    • /
    • 2022
  • Functionally graded material (FGM) has been spotlighted as an advanced composite material due to its excellent thermo-mechanical performance. And the buckling of FGM resting on elastic foundations has been a challenging subject because its behavior is directly connected to the structural safety. In this context, this paper is concerned with a numerical buckling analysis of metal-ceramic FG plates resting on a two-parameter (Pasternak-type) elastic foundation. The buckling problem is formulated based on the neutral surface and the (1,1,0) hierarchical model, and it is numerically approximated by 2-D natural element method (NEM) which provides a high accuracy even for coarse grid. The derived eigenvalue equations are solved by employing Lanczos and Jacobi algorithms. The numerical results are compared with the reference solutions through the benchmark test, from which the reliability of present numerical method has been verified. Using the developed numerical method, the critical buckling loads of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

박판 블록의 용접 좌굴 변형 해석에 관한 연구 (Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block)

  • 장경복;박중구;양진혁;조시훈;장태원
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.23-25
    • /
    • 2005
  • This paper presents a numerical analysis method for predicting welding-induced deformation and buckling in ship block with thin plates. The numerical method is particularized on evaluating buckling distortion induced by welding. There are two steps in the numerical analysis model. One is to solve the eigenvalue problem of welded structure by elastic buckling analysis, and the other is to solve the welding-induced buckling distortion of welded structure by post-mechanical analysis. Equivalent force method was used for considering the shrinkage force by welding in the analysis model.

  • PDF